咨询与建议

限定检索结果

文献类型

  • 491 篇 期刊文献
  • 360 篇 会议
  • 1 册 图书

馆藏范围

  • 852 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 517 篇 工学
    • 351 篇 计算机科学与技术...
    • 303 篇 软件工程
    • 107 篇 生物工程
    • 76 篇 信息与通信工程
    • 72 篇 控制科学与工程
    • 67 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 41 篇 电气工程
    • 40 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 20 篇 仪器科学与技术
    • 18 篇 网络空间安全
    • 17 篇 建筑学
  • 395 篇 理学
    • 227 篇 数学
    • 132 篇 统计学(可授理学、...
    • 119 篇 生物学
    • 82 篇 物理学
    • 52 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 123 篇 管理学
    • 68 篇 管理科学与工程(可...
    • 56 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 66 篇 医学
    • 52 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 32 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 16 篇 农学
  • 15 篇 经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 50 篇 deep learning
  • 44 篇 accuracy
  • 24 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 medical services
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 14 篇 machine learning...
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 12 篇 image segmentati...
  • 12 篇 data models

机构

  • 60 篇 machine learning...
  • 48 篇 department of st...
  • 22 篇 center for data ...
  • 22 篇 munich center fo...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 18 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 64 篇 ramdas aaditya
  • 20 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 11 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 508 篇 英文
  • 343 篇 其他
  • 2 篇 中文
检索条件"机构=Data Science and Machine Learning Department"
852 条 记 录,以下是511-520 订阅
排序:
Regression with comparisons: escaping the curse of dimensionality with ordinal information
收藏 引用
The Journal of machine learning Research 2020年 第1期21卷 6480-6533页
作者: Yichong Xu Sivaraman Balakrishnan Aarti Singh Artur Dubrawski Machine Learning Department Department of Statistics and Data Science Machine Learning Department Auton Lab The Robotics Institute Carnegie Mellon University Pittsburgh PA
In supervised learning, we typically leverage a fully labeled dataset to design methods for function estimation or prediction. In many practical situations, we are able to obtain alternative feedback, possibly at a lo... 详细信息
来源: 评论
Disease and Medications Text Visualization Using Scattertext
Disease and Medications Text Visualization Using Scattertext
收藏 引用
Intelligent Control, Computing and Communications (IC3), International Conference on
作者: Rama Krishna K Kaipa Sandhya Praveen Gujjar J Raghavendra M Devadas Vani Hiremani Sapna R Department of Artificial Intelligence and Machine Learning Impact college of Engineering and Applied Sciences Bengaluru India Department of Data Science Impact college of Engineering and applied sciences Bengaluru India Faculty of Management Studies JAIN (Deemed-to-be University) Bengaluru India Department of Information Technology Manipal Institute of Technology Bengaluru Manipal Academy of Higher Education (MAHE) Manipal India Symbiosis Institute of Technology Symbiosis International (Deemed) University Pune India
Before text data can be analysed and visualised, it must be thoroughly cleaned due to its messy nature. data visualizations use the data to tell an engaging and simple-to-read story. That is what the Scattertext tool ... 详细信息
来源: 评论
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
arXiv
收藏 引用
arXiv 2022年
作者: Vaitl, Lorenz Nicoli, Kim Andrea Nakajima, Shinichi Kessel, Pan Machine Learning Group Department of Electrical Engineering & Computer Science Technische Universität Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany RIKEN Center for AIP Chuo City Tokyo103-0027 Japan
We propose an algorithm to estimate the path-gradient of both the reverse and forward Kullback–Leibler divergence for an arbitrary manifestly invertible normalizing flow. The resulting path-gradient estimators are st...
来源: 评论
Path-Gradient Estimators for Continuous Normalizing Flows
arXiv
收藏 引用
arXiv 2022年
作者: Vaitl, Lorenz Nicoli, Kim Andrea Nakajima, Shinichi Kessel, Pan Machine Learning Group Department of Electrical Engineering & Computer Science Technische Universität Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany RIKEN Center for AIP Chuo City Tokyo103-0027 Japan
Recent work has established a path-gradient estimator for simple variational Gaussian distributions and has argued that the path-gradient is particularly beneficial in the regime in which the variational distribution ...
来源: 评论
Evaluating Posterior Distributions by Selectively Breeding Prior Samples
arXiv
收藏 引用
arXiv 2022年
作者: Shalizi, Cosma Rohilla Department of Statistics and Data Science and of Machine Learning Carnegie Mellon University PittsburghPA15213 United States The Santa Fe Institute 1399 Hyde Park Road Santa FeNM87501 United States
Using Markov chain Monte Carlo to sample from posterior distributions was the key innovation which made Bayesian data analysis practical. Notoriously, however, MCMC is hard to tune, hard to diagnose, and hard to paral... 详细信息
来源: 评论
Flow-Based Sampling for Entanglement Entropy and the machine learning of Defects
收藏 引用
Physical Review Letters 2025年 第15期134卷 151601-151601页
作者: Andrea Bulgarelli Elia Cellini Karl Jansen Stefan Kühn Alessandro Nada Shinichi Nakajima Kim A. Nicoli Marco Panero Department of Physics University of Turin and INFN Turin unit Via Pietro Giuria 1 I-10125 Turin Italy Computation-Based Science and Technology Research Center The Cyprus Institute Nicosia Cyprus Deutsches Elektronen-Synchrotron DESY Zeuthen Germany Berlin Institute for the Foundations of Learning and Data (BIFOLD) Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany RIKEN Center for AIP Tokyo Japan Transdisciplinary Research Area (TRA) Matter University of Bonn Germany Helmholtz Institute for Radiation and Nuclear Physics (HISKP) Bonn Germany Department of Physics and Helsinki Institute of Physics PL 64 FIN-00014 University of Helsinki Finland
We introduce a novel technique to numerically calculate Rényi entanglement entropies in lattice quantum field theory using generative models. We describe how flow-based approaches can be combined with the replica... 详细信息
来源: 评论
Secure Device on boarding in IoT Networks
Secure Device on boarding in IoT Networks
收藏 引用
International Conference on science Technology Engineering and Management (ICONSTEM)
作者: P. Sathyaraj Shankar Nayak Bhukya S. Rukmani Devi Chetan Umadi A. Ajina Rajendiran M Department of Electronics and Communication Engineering RMK College of Engineering and Technology Puduvoyal Tamil Nadu India Department of Computer Science Engineering (Data Science) CMR Technical Campus Hyderabad Telangana India Department of Computer Science Saveetha College of Liberal Arts and Sciences SIMATS Deemed to be University Chennai Tamil Nadu India Department of Electronics& Telecommunication Engineering Dayananda Sagar College of Engineering Bengaluru Karnataka India Department of Artificial Intelligence and Machine Learning M S Ramaiah Institute of Technology Bangalore India Department of Computer Science and Engineering Panimalar Engineering College Chennai Tamil Nadu India
The fast spread of Internet of Things (IoT) gadgets has led to unprecedented number of interconnected systems offering many applications and services. Diverse elements in IoT networks increase security vulnerabilities... 详细信息
来源: 评论
Deep Reinforcement learning for Beam Angle Optimization of Intensity-Modulated Radiation Therapy
arXiv
收藏 引用
arXiv 2023年
作者: Bao, Peng Wang, Gong Yang, Ruijie Dong, Bin The Center for Data Science Peking University the Department of Radiation Oncology Peking University Third Hospital Beijing China The Department of Radiation Oncology Peking University Third Hospital Beijing China Beijing International Center for Mathematical Research Center for Machine Learning Research National Biomedical Imaging Center Peking University Beijing China
Objective: Intensity-modulated radiation therapy (IMRT) beam angle optimization (BAO) is a challenging combinatorial optimization problem that is NP-hard. In this study, we aim to develop a personalized BAO algorithm ... 详细信息
来源: 评论
Facilitated machine learning for image-based fruit quality assessment
arXiv
收藏 引用
arXiv 2022年
作者: Knott, Manuel Perez-Cruz, Fernando Defraeye, Thijs Empa Swiss Federal Laboratories for Materials Science Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland Swiss Data Science Center ETH Zurich and EPFL Zurich Switzerland Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland
Image-based machine learning models can be used to make the sorting and grading of agricultural products more efficient. In many regions, implementing such systems can be difficult due to the lack of centralization an... 详细信息
来源: 评论
Precise Asymptotics of Bagging Regularized M-estimators
arXiv
收藏 引用
arXiv 2024年
作者: Koriyama, Takuya Patil, Pratik Du, Jin-Hong Tan, Kai Bellec, Pierre C. Booth School of Business The University of Chicago ChicagoIL60637 United States Department of Statistics University of California BerkeleyCA94720 United States Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics Rutgers University New BrunswickNJ08854 United States
We characterize the squared prediction risk of ensemble estimators obtained through subagging (subsample bootstrap aggregating) regularized M-estimators and construct a consistent estimator for the risk. Specifically,... 详细信息
来源: 评论