咨询与建议

限定检索结果

文献类型

  • 341 篇 会议
  • 255 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 597 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 341 篇 工学
    • 247 篇 计算机科学与技术...
    • 215 篇 软件工程
    • 74 篇 生物工程
    • 64 篇 生物医学工程(可授...
    • 53 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 44 篇 光学工程
    • 41 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 安全科学与工程
    • 18 篇 动力工程及工程热...
    • 16 篇 机械工程
    • 15 篇 土木工程
    • 14 篇 仪器科学与技术
    • 14 篇 建筑学
  • 229 篇 理学
    • 113 篇 数学
    • 78 篇 生物学
    • 67 篇 物理学
    • 58 篇 统计学(可授理学、...
    • 38 篇 化学
    • 22 篇 系统科学
  • 83 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 56 篇 医学
    • 42 篇 临床医学
    • 37 篇 基础医学(可授医学...
    • 25 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 15 篇 农学
  • 12 篇 经济学
  • 5 篇 教育学

主题

  • 42 篇 accuracy
  • 41 篇 deep learning
  • 37 篇 machine learning
  • 26 篇 real-time system...
  • 26 篇 convolutional ne...
  • 23 篇 training
  • 21 篇 reviews
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 machine learning...
  • 18 篇 medical services
  • 18 篇 decision making
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 image segmentati...
  • 14 篇 diseases
  • 13 篇 computational mo...
  • 13 篇 data models
  • 12 篇 reinforcement le...
  • 11 篇 reliability

机构

  • 18 篇 vector institute...
  • 18 篇 center for machi...
  • 17 篇 center for data ...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 13 篇 department of ar...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 department of st...
  • 10 篇 beijing internat...
  • 9 篇 machine learning...
  • 8 篇 school of comput...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 national biomedi...
  • 7 篇 australian insti...
  • 7 篇 university kasse...

作者

  • 22 篇 prateek verma
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 aditya barhate
  • 11 篇 abhay tale
  • 10 篇 tale abhay
  • 10 篇 swapnil gundewar
  • 10 篇 von rudorff guid...
  • 9 篇 barhate aditya
  • 8 篇 zhu xiao xiang
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 xia yong
  • 7 篇 xie yutong
  • 7 篇 bin dong
  • 7 篇 bjoern m. eskofi...

语言

  • 508 篇 英文
  • 88 篇 其他
  • 1 篇 中文
检索条件"机构=Data and Machine Learning Engineering"
597 条 记 录,以下是461-470 订阅
排序:
Federated learning for Inference at Anytime and Anywhere
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Zicheng Li, Da Fernandez-Marques, Javier Laskaridis, Stefanos Gao, Yan Dudziak, Lukasz Li, Stan Z. Hu, Shell Xu Hospedales, Timothy School of Information Science & Electronic Engineering Zhejiang University Hangzhou China Machine Learning & Data Intelligence Samsung AI Center Cambridge United Kingdom Automated AI Samsung AI Center Cambridge United Kingdom Distributed AI Samsung AI Center Cambridge United Kingdom Department of Computer Science and Technology The University of Cambridge Cambridge United Kingdom School of Engineering Westlake University Hangzhou China School of Informatics The University of Edinburgh Edinburgh United Kingdom
Federated learning has been predominantly concerned with collaborative training of deep networks from scratch, and especially the many challenges that arise, such as communication cost, robustness to heterogeneous dat... 详细信息
来源: 评论
Uncertainty Quantification in machine learning for engineering Design and Health Prognostics: A Tutorial
arXiv
收藏 引用
arXiv 2023年
作者: Nemani, Venkat Biggio, Luca Huan, Xun Hu, Zhen Fink, Olga Tran, Anh Wang, Yan Zhang, Xiaoge Hu, Chao Department of Mechanical Engineering Iowa State University AmesIA50011 United States Data Analytics Lab ETH Zürich Switzerland Department of Mechanical Engineering University of Michigan Ann ArborMI48109 United States Department of Industrial and Manufacturing Systems Engineering University of Michigan-Dearborn DearbornMI48128 United States Intelligent Maintenance and Operations Systems EPFL Lausanne12309 Switzerland Scientific Machine Learning Sandia National Laboratories AlbuquerqueNM87123 United States George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology AtlantaGA30332 United States Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Kowloon Hong Kong New Territories Hong Kong Department of Mechanical Engineering University of Connecticut StorrsCT06269 United States
On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and mana... 详细信息
来源: 评论
Weisfeiler and Leman go machine learning: the story so far
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 15865-15923页
作者: Christopher Morris Yaron Lipman Haggai Maron Bastian Rieck Nils M. Kriege Martin Grohe Matthias Fey Karsten Borgwardt Department of Computer Science RWTH Aachen University Aachen Germany Meta AI Research Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot Israel NVIDIA Research Tel Aviv Israel AIDOS Lab Institute of AI for Health Helmholtz Zentrum München and Technical University of Munich Munich Germany Faculty of Computer Science and Research Network Data Science University of Vienna Vienna Austria Kumo.AI Mountain View CA Machine Learning & Computational Biology Lab Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland and Swiss Institute of Bioinformatics Lausanne Switzerland
In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a powerful tool for machine learning with graphs ... 详细信息
来源: 评论
Relative energies without electronic perturbations via Alchemical Integral Transform
arXiv
收藏 引用
arXiv 2022年
作者: Krug, Simon León von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Computational Materials Physics Kolingasse 14-16 Vienna1090 Austria Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany University of California Los Angeles 460 Portola Plaza Los AngelesCA90095 United States Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada
We show that the energy of a perturbed system can be fully recovered from the unperturbed system's electron density. We derive an alchemical integral transform by parametrizing space in terms of transmutations, th... 详细信息
来源: 评论
Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Tianyu Hiller, Markus Ehsanpour, Mahsa Ma, Rongkai Drummond, Tom Reid, Ian Rezatofighi, Hamid The Department of Electrical and Computer Systems Engineering Monash University Australia The School of Computing and Information Systems The University of Melbourne Australia The Australian Institute for Machine Learning The University of Adelaide Australia The Department of Data Science and AI Monash University Australia The Australian Centre for Robotic Vision Australia
Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracki... 详细信息
来源: 评论
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation?
arXiv
收藏 引用
arXiv 2024年
作者: Bassi, Pedro R.A.S. Li, Wenxuan Tang, Yucheng Isensee, Fabian Wang, Zifu Chen, Jieneng Chou, Yu-Cheng Roy, Saikat Kirchhoff, Yannick Rokuss, Maximilian Huang, Ziyan Ye, Jin He, Junjun Wald, Tassilo Ulrich, Constantin Baumgartner, Michael Maier-Hein, Klaus H. Jaeger, Paul Ye, Yiwen Xie, Yutong Zhang, Jianpeng Chen, Ziyang Xia, Yong Xing, Zhaohu Zhu, Lei Sadegheih, Yousef Bozorgpour, Afshin Kumari, Pratibha Azad, Reza Merhof, Dorit Shi, Pengcheng Ma, Ting Du, Yuxin Bai, Fan Huang, Tiejun Zhao, Bo Wang, Haonan Li, Xiaomeng Gu, Hanxue Dong, Haoyu Yang, Jichen Mazurowski, Maciej A. Gupta, Saumya Wu, Linshan Zhuang, Jiaxin Chen, Hao Roth, Holger Xu, Daguang Blaschko, Matthew B. Decherchi, Sergio Cavalli, Andrea Yuille, Alan L. Zhou, Zongwei Department of Computer Science Johns Hopkins University United States Department of Pharmacy and Biotechnology University of Bologna Italy Center for Biomolecular Nanotechnologies Istituto Italiano di Tecnologia Italy NVIDIA United States Germany Germany ESAT-PSI KU Leuven Belgium Faculty of Mathematics and Computer Science Heidelberg University Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Germany Shanghai Jiao Tong University China Shanghai Artificial Intelligence Laboratory China Pattern Analysis and Learning Group Department of Radiation Oncology Heidelberg University Hospital Germany DKFZ Germany School of Computer Science and Engineering Northwestern Polytechnical University China Australian Institute for Machine Learning The University of Adelaide Australia College of Computer Science and Technology Zhejiang University China Hong Kong University of Science and Technology Guangzhou China Hong Kong University of Science and Technology Hong Kong Faculty of Informatics and Data Science University of Regensburg Germany Faculty of Electrical Engineering and Information Technology RWTH Aachen University Germany Fraunhofer Institute for Digital Medicine MEVIS Germany Electronic & Information Engineering School Harbin Institute of Technology Shenzhen China China The Chinese University of Hong Kong Hong Kong Peking University China Department of Electrical and Computer Engineering Duke University United States Stony Brook University United States Department of Computer Science and Engineering Department of Chemical and Biological Engineering Division of Life Science Hong Kong University of Science and Technology Hong Kong Data Science and Computation Facility Fondazione Istituto Italiano di Tecnologia Italy Ecole Polytechnique Fédérale de Lausanne Switzerland
How can we test AI performance? This question seems trivial, but it isn’t. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and sho... 详细信息
来源: 评论
Evolutionary Monte Carlo of QM properties in chemical space: Electrolyte design
arXiv
收藏 引用
arXiv 2023年
作者: Karandashev, Konstantin Weinreich, Jan Heinen, Stefan Arrieta, Daniel Jose Arismendi von Rudorff, Guido Falk Hermansson, Kersti von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Chemistry-Angström Laboratory Uppsala University Box 538 UppsalaSE-75121 Sweden University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Strase 40 Kassel34132 Germany Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Optimizing a target function over the space of organic molecules is an important problem appearing in many fields of applied science, but also a very difficult one due to the vast number of possible molecular systems.... 详细信息
来源: 评论
VAE-GAN based zero-shot outlier detection  4
VAE-GAN based zero-shot outlier detection
收藏 引用
4th International Symposium on Computer Science and Intelligent Control, ISCSIC 2020
作者: Ibrahim, Bekkouch Imad Nicolae, Dragos Constantin Khan, Adil Ali, Syed Imran Khattak, Asad Machine Learning and Knowledge Representation Lab Institute of Data Science and AI Innopolis Tatarstan Russia Institutul de Cercetari Pentru Inteligenta Artificiala Mihai Draganescu Romania Department of Computer Engineering Kyung Hee University Yongin-si Korea Republic of College of Technological Innovations Zayed University Abu Dhabi United Arab Emirates
Outlier detection is one of the main fields in machine learning and it has been growing rapidly due to its wide range of applications. In the last few years, deep learning-based methods have outperformed machine learn... 详细信息
来源: 评论
Towards Ground Truth Explainability on Tabular data
arXiv
收藏 引用
arXiv 2020年
作者: Barr, Brian Xu, Ke Silva, Claudio Bertini, Enrico Reilly, Robert Bayan Bruss, C. Wittenbach, Jason D. Center for Machine Learning Capital One New YorkNY United States Tandon School of Engineering New York University NY United States Center for Data Science New York University NY United States Card Machine Learning and Technology Capital One PlanoTX United States Center for Machine Learning Capital One Maclean VA United States Center for Machine Learning Capital One CambridgeMA United States
In data science, there is a long history of using synthetic data for method development, feature selection and feature engineering. Our current interest in synthetic data comes from recent work in explainability. Toda... 详细信息
来源: 评论
Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging
arXiv
收藏 引用
arXiv 2021年
作者: Hashemi, Ali Gao, Yijing Cai, Chang Ghosh, Sanjay Müller, Klaus-Robert Nagarajan, Srikantan S. Haufe, Stefan Uncertainty Inverse Modeling and Machine Learning Group Technische Universität Berlin Germany Machine Learning Group Technische Universität Berlin Germany Department of Radiology and Biomedical Imaging University of California San Francisco United States National Engineering Research Center for E-Learning Central China Normal University China BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany Physikalisch-Technische Bundesanstalt Berlin Germany Charité – Universitätsmedizin Berlin Germany Bernstein Center for Computational Neuroscience Berlin Germany
Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI ... 详细信息
来源: 评论