咨询与建议

限定检索结果

文献类型

  • 341 篇 会议
  • 255 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 597 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 341 篇 工学
    • 247 篇 计算机科学与技术...
    • 215 篇 软件工程
    • 74 篇 生物工程
    • 64 篇 生物医学工程(可授...
    • 53 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 44 篇 光学工程
    • 41 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 安全科学与工程
    • 18 篇 动力工程及工程热...
    • 16 篇 机械工程
    • 15 篇 土木工程
    • 14 篇 仪器科学与技术
    • 14 篇 建筑学
  • 229 篇 理学
    • 113 篇 数学
    • 78 篇 生物学
    • 67 篇 物理学
    • 58 篇 统计学(可授理学、...
    • 38 篇 化学
    • 22 篇 系统科学
  • 83 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 56 篇 医学
    • 42 篇 临床医学
    • 37 篇 基础医学(可授医学...
    • 25 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 15 篇 农学
  • 12 篇 经济学
  • 5 篇 教育学

主题

  • 42 篇 accuracy
  • 41 篇 deep learning
  • 37 篇 machine learning
  • 26 篇 real-time system...
  • 26 篇 convolutional ne...
  • 23 篇 training
  • 21 篇 reviews
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 machine learning...
  • 18 篇 medical services
  • 18 篇 decision making
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 image segmentati...
  • 14 篇 diseases
  • 13 篇 computational mo...
  • 13 篇 data models
  • 12 篇 reinforcement le...
  • 11 篇 reliability

机构

  • 18 篇 vector institute...
  • 18 篇 center for machi...
  • 17 篇 center for data ...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 13 篇 department of ar...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 department of st...
  • 10 篇 beijing internat...
  • 9 篇 machine learning...
  • 8 篇 school of comput...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 national biomedi...
  • 7 篇 australian insti...
  • 7 篇 university kasse...

作者

  • 22 篇 prateek verma
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 aditya barhate
  • 11 篇 abhay tale
  • 10 篇 tale abhay
  • 10 篇 swapnil gundewar
  • 10 篇 von rudorff guid...
  • 9 篇 barhate aditya
  • 8 篇 zhu xiao xiang
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 xia yong
  • 7 篇 xie yutong
  • 7 篇 bin dong
  • 7 篇 bjoern m. eskofi...

语言

  • 508 篇 英文
  • 88 篇 其他
  • 1 篇 中文
检索条件"机构=Data and Machine Learning Engineering"
597 条 记 录,以下是481-490 订阅
排序:
From quantum alchemy to Hammett's equation: Covalent bonding from atomic energy partitioning
arXiv
收藏 引用
arXiv 2022年
作者: Sahre, Michael J. von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 Vienna1090 Austria Währinger Str. 42 Vienna1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
We present an intuitive and general analytical approximation estimating the energy of covalent single and double bonds between participating atoms in terms of their respective nuclear charges with just three parameter... 详细信息
来源: 评论
Encrypted machine learning of molecular quantum properties
arXiv
收藏 引用
arXiv 2022年
作者: Weinreich, Jan von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria University of Vienna Vienna Doctoral School in Physics Boltzmanngasse 5 Vienna1090 Austria University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Large machine learning models with improved predictions have become widely available in the chemical sciences. Unfortunately, these models do not protect the privacy necessary within commercial settings, prohibiting t... 详细信息
来源: 评论
Traffic4cast at NeurIPS 2022 – Predict Dynamics along Graph Edges from Sparse Node data: Whole City Traffic and ETA from Stationary Vehicle Detectors
arXiv
收藏 引用
arXiv 2023年
作者: Neun, Moritz Eichenberger, Christian Martin, Henry Spanring, Markus Siripurapu, Rahul Springer, Daniel Deng, Leyan Wu, Chenwang Lian, Defu Zhou, Min Lumiste, Martin Ilie, Andrei Wu, Xinhua Lyu, Cheng Lu, Qing-Long Mahajan, Vishal Lu, Yichao Li, Jiezhang Li, Junjun Gong, Yue-Jiao Grötschla, Florian Mathys, Joël Wei, Ye Haitao, He Fang, Hui Malm, Kevin Tang, Fei Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland School of Data Science University of Science and Technology of China China Huawei Noah’s Ark Lab Bolt Technology Tallinn Estonia University of Bucharest Bucharest Romania Department of Civil and Environmental Engineering Northeastern University BostonMA United States Transportation Systems Engineering Technical University of Munich Germany Layer 6 AI Toronto Canada School of Coumpute Science and Engineering South China University of Technology Guangzhou China ETH Zurich Switzerland Department of Computer Science Loughborough University Loughborough United Kingdom School of Architecture Building and Civil Engineering Loughborough University Loughborough United Kingdom HERE Technologies ChicagoIL United States Kaiko Zurich Switzerland Machine Learning Institute Johannes Kepler University Linz Austria
The global trends of urbanization and increased personal mobility force us to rethink the way we live and use urban space. The Traffic4cast competition series tackles this problem in a data-driven way, advancing the l... 详细信息
来源: 评论
Development of Modern Forecasting Models
Development of Modern Forecasting Models
收藏 引用
International Conference on Management of Large-Scale System Development (MLSD)
作者: Vera Ivanyuk Konstantin Shuvalov Gurami Akhobadze Victoria Malekova Alexey Mikhailov Kiril Levchenko Department of Data Analysis and Machine Learning Financial University Under the Government of the Russian Federation Moscow Russia Department of Higher Mathematics Bauman Moscow State Technical University Moscow Russia Laboratory of Management of Large-Scale System Development V.A.Trapeznikov Institute of Control Sciences of RAS Moscow Russia Laboratory of Network Systems Control V. A.Trapeznikov Institute of Control Sciences of RAS Moscow Russia Department of Financial Markets and Financial Engineering Financial University Under the Government of the Russian Federation Moscow Russia Department of Mathematics Financial University Under the Government of the Russian Federation Moscow Russia
The paper analyzed ensemble forecasting models. The results showed that ensemble models can improve forecasting performance by compensating for the shortcomings of weak models.
来源: 评论
T-Cell Receptor Optimization with Reinforcement learning and Mutation Policies for Precision Immunotherapy
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Ziqi Min, Martin Renqiang Guo, Hongyu Cheng, Chao Clancy, Trevor Ning, Xia Computer Science and Engineering The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs PrincetonNJ08540 United States Digital Technologies Research Centre National Research Council Canada ON Canada Department of Medicine Baylor College of Medicine HoustonTX77030 United States NEC Oncolmmunity AS Oslo Cancer Cluster Innovation Park Ullernchausséen 64 Oslo0379 Norway Biomedical Informatics The Ohio State University ColumbusOH43210 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these pe... 详细信息
来源: 评论
Ndmfcs: An Automatic Fruit Counting System in Modern Apple Orchard Using Abatement of Abnormal Fruit Detection
SSRN
收藏 引用
SSRN 2023年
作者: Wu, Zhenchao Sun, Xiaoming Jiang, Hanhui Mao, Wulan Li, Rui Andriyanov, Nikita Soloviev, Vladimir Fu, Longsheng College of Mechanical and Electronic Engineering Northwest A&F University Shaanxi Yangling712100 China Key Laboratory of Agricultural Internet of Things Ministry of Agriculture and Rural Affairs Shaanxi Yangling712100 China Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service Shaanxi Yangling712100 China Northwest A&F University Shenzhen Research Institute Guangdong Shenzhen518000 China Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation Moscow125167 Russia Institute of Agricultural Mechanization Xinjiang Academy of Agricultural Sciences Urumqi830000 China
Automatic fruit counting is an important task for growers to estimate yield and manage orchards. Although many deep-learning-based fruit detection algorithms have been developed to improve performance of automatic fru... 详细信息
来源: 评论
CROSS-POPULATION AMPLITUDE COUPLING IN HIGH-DIMENSIONAL OSCILLATORY NEURAL TIME SERIES
arXiv
收藏 引用
arXiv 2021年
作者: Bong, Heejong Ventura, Valérie Yttri, Eric Smith, Matthew A. Kass, Robert E. Department of Statistics and Data Sciences Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Department of Biological Sciences Carnegie Mellon University United States Department of Biomedical Engineering Carnegie Mellon University United States Neuroscience Institute Carnegie Mellon University United States
An important outstanding problem in analysis of neural data is to characterize interactions across brain regions from high-dimensional multiple-electrode recordings during a behavioral experiment. A leading theory, ba... 详细信息
来源: 评论
Correction: Multivariate clustering for maximizing the small cell users’ performance based on the dynamic interference alignment
收藏 引用
Wireless Networks 2023年 第1期30卷 593-593页
作者: Dakshinamoorthy, Prabakar Vaitilingam, Saminadan Sundar, Ramesh Department of Data Science and Business Systems School of Computing College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur India Department of Electronics and Communication Engineering Puducherry Technological University Puducherry India Department of Artificial Intelligence and Machine Learning Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
来源: 评论
Acoustic Resonance Recognition of Coins
Acoustic Resonance Recognition of Coins
收藏 引用
IEEE Instrumentation and Measurement Technology Conference
作者: Ivan Kraljevski Frank Duckhorn Yong Chul Ju Constanze Tschoepe Christian Richter Matthias Wolff Cognitive Material Diagnostics Fraunhofer IKTS Cottbus Germany Machine Learning and Data Analysis Fraunhofer IKTS Dresden Germany Chair of Communications Engineering BTU Cottbus-Senftenberg Cottbus Germany
In this study, we compare different machine learning approaches applied to acoustic resonance recognition of coins. Euro-cents and Euro-coins were classified by the sound emerging when throwing the coins onto a hard *...
来源: 评论
Convolutional Autoencoders for Health Indicators Extraction in Piezoelectric Sensors
Convolutional Autoencoders for Health Indicators Extraction ...
收藏 引用
IEEE Sensors
作者: Ivan Kraljevski Frank Duckhorn Constanze Tschoepe Matthias Wolff Cognitive Material Diagnostics Fraunhofer IKTS Cottbus Germany Machine Learning and Data Analysis Fraunhofer IKTS Dresden Germany Chair of Communications Engineering BTU Cottbus-Senftenberg Cottbus Germany
We present a method for extracting health indicators from piezoelectric sensors applied in the case of microfluidic valves. Convolutional autoencoders were used to train a model on the normal operating conditions and ... 详细信息
来源: 评论