咨询与建议

限定检索结果

文献类型

  • 341 篇 会议
  • 255 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 597 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 341 篇 工学
    • 247 篇 计算机科学与技术...
    • 215 篇 软件工程
    • 74 篇 生物工程
    • 64 篇 生物医学工程(可授...
    • 53 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 44 篇 光学工程
    • 41 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 安全科学与工程
    • 18 篇 动力工程及工程热...
    • 16 篇 机械工程
    • 15 篇 土木工程
    • 14 篇 仪器科学与技术
    • 14 篇 建筑学
  • 229 篇 理学
    • 113 篇 数学
    • 78 篇 生物学
    • 67 篇 物理学
    • 58 篇 统计学(可授理学、...
    • 38 篇 化学
    • 22 篇 系统科学
  • 83 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 56 篇 医学
    • 42 篇 临床医学
    • 37 篇 基础医学(可授医学...
    • 25 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 15 篇 农学
  • 12 篇 经济学
  • 5 篇 教育学

主题

  • 42 篇 accuracy
  • 41 篇 deep learning
  • 37 篇 machine learning
  • 26 篇 real-time system...
  • 26 篇 convolutional ne...
  • 23 篇 training
  • 21 篇 reviews
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 machine learning...
  • 18 篇 medical services
  • 18 篇 decision making
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 image segmentati...
  • 14 篇 diseases
  • 13 篇 computational mo...
  • 13 篇 data models
  • 12 篇 reinforcement le...
  • 11 篇 reliability

机构

  • 18 篇 vector institute...
  • 18 篇 center for machi...
  • 17 篇 center for data ...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 13 篇 department of ar...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 department of st...
  • 10 篇 beijing internat...
  • 9 篇 machine learning...
  • 8 篇 school of comput...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 national biomedi...
  • 7 篇 australian insti...
  • 7 篇 university kasse...

作者

  • 22 篇 prateek verma
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 aditya barhate
  • 11 篇 abhay tale
  • 10 篇 tale abhay
  • 10 篇 swapnil gundewar
  • 10 篇 von rudorff guid...
  • 9 篇 barhate aditya
  • 8 篇 zhu xiao xiang
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 xia yong
  • 7 篇 xie yutong
  • 7 篇 bin dong
  • 7 篇 bjoern m. eskofi...

语言

  • 508 篇 英文
  • 88 篇 其他
  • 1 篇 中文
检索条件"机构=Data and Machine Learning Engineering"
597 条 记 录,以下是511-520 订阅
排序:
Stochastic Neighbor Embedding with Gaussian and Student-t Distributions: Tutorial and Survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Stochastic Neighbor Embedding (SNE) is a manifold learning and dimensionality reduction method with a probabilistic approach. In SNE, every point is consider to be the neighbor of all other points with some probabilit... 详细信息
来源: 评论
Multidimensional scaling, Sammon mapping, and Isomap: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Multidimensional Scaling (MDS) is one of the first fundamental manifold learning methods. It can be categorized into several methods, i.e., classical MDS, kernel classical MDS, metric MDS, and non-metric MDS. Sammon m... 详细信息
来源: 评论
Locally linear embedding and its variants: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for Locally Linear Embedding (LLE) and its variants. The idea of LLE is fitting the local structure of manifold in the embedding space. In this paper, we first cover LLE, kernel LLE... 详细信息
来源: 评论
On ADMM in deep learning: convergence and saturation-avoidance
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2021年 第1期22卷 9024-9090页
作者: Jinshan Zeng Shao-Bo Lin Yuan Yao Ding-Xuan Zhou School of Computer and Information Engineering Jiangxi Normal University Nanchang China and Liu Bie Ju Centre for Mathematical Sciences City University of Hong Kong Hong Kong and Department of Mathematics Hong Kong University of Science and Technology Hong Kong Center of Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China Department of Mathematics Hong Kong University of Science and Technology Hong Kong School of Data Science and Department of Mathematics City University of Hong Kong Hong Kong
In this paper, we develop an alternating direction method of multipliers (ADMM) for deep neural networks training with sigmoid-type activation functions (called sigmoid-ADMM pair), mainly motivated by the gradient-fre... 详细信息
来源: 评论
AstroPhot: Fitting Everything Everywhere All at Once in Astronomical Images
arXiv
收藏 引用
arXiv 2023年
作者: Stone, Connor J. Courteau, Stéphane Cuillandre, Jean-Charles Hezaveh, Yashar Perreault-Levasseur, Laurence Arora, Nikhil Department of Physics Université de Montréal MontréalQC Canada Mila - Québec Artificial Intelligence Institute MontréalQC Canada Ciela - Montréal Institute for Astrophysical Data Analysis and Machine Learning MontréalQC Canada Department of Physics Engineering Physics & Astronomy Queen’s University KingstonON Canada AIM CEA CNRS Université Paris-Saclay Université de Paris Gif-sur-YvetteF-91191 France Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates New York University Abu Dhabi United Arab Emirates
We present ASTROPHOT, a fast, powerful, and user-friendly Python based astronomical image photometry solver. ASTROPHOT incorporates automatic differentiation and GPU (or parallel CPU) acceleration, powered by the mach... 详细信息
来源: 评论
machine learning Approaches in Polymer Science:Progress and Fundamental for a New
收藏 引用
SmartMat 2025年 第1期6卷 102-142页
作者: 482.T.-S.Lin C.W.ColeyH.Mochigaseet al.“Bigsmiles:A Structurally-Based Line Notation for Describing Macromolecules"ACs Central Science 5no.9(2019):1523-1531.483.J.Wu and M.Gu“Perfecting Liquid-State Theories With Machine Intelligence"Journal of Physical Chemistry Letters 14no.47(2023):10545-10552.484.M.Rubinstein and R.H.ColbyPolymer Physics(Oxford University Press2003).485.M.E.DeagenB.Dalle-CortN.J.RebelloT.S.LinD.J.Walshand B.D.Olsen“Machine Translation Between BigSMILES Line Notation and Chemical Structure Diagrams"Macromolecules 57no.1(2023):42-53.486.S.M.McDonaldE.K.AugustineQ.LannersC.RudinL.Catherine Brinsonand M.L.Becker“Applied Machine Learning as a Driver for Polymeric Biomaterials Design"Nature Communications 14no.1(2023):4838.487.B.HuA.Linand L.C.Brinson“Tackling Structured Knowledge Extraction From Polymer Nanocomposite Literature as an NER/RE Task With seq2seq"Integrating Materials and Manufacturing Innovation 13no.3(2024):656-668.488.P.V.CoveneyE.R.Doughertyand R.R.Highfield“Big Data Need Big Theory Too"Philosophical Transactions of the Royal Society A:MathematicalPhysical and Engineering Sciences 374no.2080(2016):201601 489.M.Tang R.ZhangS.Liet al.“Towards a Supertough Thermo-plastic Polyisoprene Elastomer Based on a Biomimic Strategy"Angewandte Chemie International Edition557no.48(2018):15836-15840.490.M.Z.Naser“An Engineer's Guide to Explainable Artificial Intel-ligence and Interpretable Machine Learning:Navigating CausalityForced Goodnessand the False Perception of Inference"Automation in Construction 129(2021):103821 .491.T.K.Patra V.MeenakshisundaramJ.H.Hungand D.S.Simmons“Neural-Network-Biased Genetic Algorithms for Materials Design:Evolutionary Algorithms That LearnACS Combinatorial Science 19no.2(2017):96-107.
machine learning(ML),material genome,and big data approaches are highly overlapped in their strategies,algorithms,and *** can target various definitions,distributions,and correlations of concerned physical parameters ...
来源: 评论
Conformational and state-specific effects in reactions of 2,3-dibromobutadiene with Coulomb-crystallized calcium ions
arXiv
收藏 引用
arXiv 2023年
作者: Kilaj, Ardita Käser, Silvan Wang, Jia Straňák, Patrik Schwilk, Max Xu, Lei von Lilienfeld, O. Anatole Küpper, Jochen Meuwly, Markus Willitsch, Stefan Department of Chemistry University of Basel Klingelbergstrasse 80 Basel4056 Switzerland Center for Free-Electron Laser Science CFEL Deutsches Elektronen-Synchrotron DESY Notkestr. 85 Hamburg22607 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoONM5S 3H6 Canada Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data BIFOLD Germany Department of Physics Universität Hamburg Luruper Chaussee 149 Hamburg22761 Germany Department of Chemistry Universität Hamburg Martin-Luther-King-Platz 6 Hamburg20146 Germany Center for Ultrafast Imaging Universität Hamburg Luruper Chaussee 149 Hamburg22761 Germany Department of Chemistry Brown University ProvidenceRI02912 United States
Recent advances in experimental methodology enabled studies of the quantum-state- and conformational dependence of chemical reactions under precisely controlled conditions in the gas phase. Here, we generated samples ... 详细信息
来源: 评论
Antisymmetry rules of response properties in certain chemical spaces
arXiv
收藏 引用
arXiv 2025年
作者: Shiraogawa, Takafumi Krug, Simon León Ehara, Masahiro von Lilienfeld, O. Anatole Institute for Molecular Science National Institutes of Natural Sciences 38 Nishigonaka Myodaiji Okazaki444-8585 Japan Research Center for Computational Science National Institutes of Natural Sciences 38 Nishigonaka Myodaiji Okazaki444-8585 Japan The Graduate University for Advanced Studies 38 Nishigonaka Myodaiji Okazaki444-8585 Japan Machine Learning Group Technische Universität Berlin Berlin10587 Germany Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoM5S3H6 Ontario Canada Department of Materials Science and Engineering University of Toronto St. George Campus TorontoM5S 3E4 Ontario Canada Vector Institute for Artificial Intelligence TorontoM5S 1M1 Ontario Canada Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Physics University of Toronto St. George Campus TorontoM5S 1A7 Ontario Canada Acceleration Consortium University of Toronto TorontoM5R 0A3 Ontario Canada
Understanding chemical compound space (CCS), a set of molecules and materials, is crucial for the rational discovery of molecules and materials. Concepts of symmetry have recently been introduced into CCS to account f... 详细信息
来源: 评论
Evaluating deep transfer learning for whole-brain cognitive decoding
arXiv
收藏 引用
arXiv 2021年
作者: Thomas, Armin W. Lindenberger, Ulman Samek, Wojciech Müller, Klaus-Robert Machine Learning Group Dept. of Computer Science and Electrical Engineering Technische Universität Berlin Berlin Germany Center for Lifespan Psychology Max Planck Institute for Human Development Berlin Germany Stanford Data Science Stanford University StanfordCA United States Dept. of Psychology Stanford University StanfordCA United States Max Planck UCL Centre for Computational Psychiatry and Ageing Research Berlin Germany Dept. of Artificial Intelligence Fraunhofer Heinrich Hertz Institute Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Dept. of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institute for Informatics Saarbrücken Germany
Research in many fields has shown that transfer learning (TL) is well-suited to improve the performance of deep learning (DL) models in datasets with small numbers of samples. This empirical success has triggered inte... 详细信息
来源: 评论
Drone flight data reveal energy and greenhouse gas emissions savings for small package delivery
arXiv
收藏 引用
arXiv 2021年
作者: Rodrigues, Thiago A. Patrikar, Jay Oliveira, Natalia L. Scott Matthews, H. Scherer, Sebastian Samaras, Constantine Department of Civil and Environmental Engineering Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh15213 United States Department of Statistics and Data Science Carnegie Mellon University 5000 Forbes Avenue Pittsburgh15213 United States Machine Learning Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh15213 United States
The adoption of Uncrewed Aerial Vehicles (UAVs) for last-mile deliveries will affect the energy productivity of package delivery and require new methods to understand the associated energy consumption and greenhouse g... 详细信息
来源: 评论