咨询与建议

限定检索结果

文献类型

  • 341 篇 会议
  • 255 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 597 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 341 篇 工学
    • 247 篇 计算机科学与技术...
    • 215 篇 软件工程
    • 74 篇 生物工程
    • 64 篇 生物医学工程(可授...
    • 53 篇 信息与通信工程
    • 46 篇 控制科学与工程
    • 44 篇 光学工程
    • 41 篇 电气工程
    • 30 篇 电子科学与技术(可...
    • 28 篇 化学工程与技术
    • 20 篇 安全科学与工程
    • 18 篇 动力工程及工程热...
    • 16 篇 机械工程
    • 15 篇 土木工程
    • 14 篇 仪器科学与技术
    • 14 篇 建筑学
  • 229 篇 理学
    • 113 篇 数学
    • 78 篇 生物学
    • 67 篇 物理学
    • 58 篇 统计学(可授理学、...
    • 38 篇 化学
    • 22 篇 系统科学
  • 83 篇 管理学
    • 47 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 56 篇 医学
    • 42 篇 临床医学
    • 37 篇 基础医学(可授医学...
    • 25 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 15 篇 农学
  • 12 篇 经济学
  • 5 篇 教育学

主题

  • 42 篇 accuracy
  • 41 篇 deep learning
  • 37 篇 machine learning
  • 26 篇 real-time system...
  • 26 篇 convolutional ne...
  • 23 篇 training
  • 21 篇 reviews
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 machine learning...
  • 18 篇 medical services
  • 18 篇 decision making
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 image segmentati...
  • 14 篇 diseases
  • 13 篇 computational mo...
  • 13 篇 data models
  • 12 篇 reinforcement le...
  • 11 篇 reliability

机构

  • 18 篇 vector institute...
  • 18 篇 center for machi...
  • 17 篇 center for data ...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 13 篇 department of ar...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 peking universit...
  • 10 篇 national enginee...
  • 10 篇 department of st...
  • 10 篇 beijing internat...
  • 9 篇 machine learning...
  • 8 篇 school of comput...
  • 7 篇 datta meghe inst...
  • 7 篇 datta meghe inst...
  • 7 篇 national biomedi...
  • 7 篇 australian insti...
  • 7 篇 university kasse...

作者

  • 22 篇 prateek verma
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 aditya barhate
  • 11 篇 abhay tale
  • 10 篇 tale abhay
  • 10 篇 swapnil gundewar
  • 10 篇 von rudorff guid...
  • 9 篇 barhate aditya
  • 8 篇 zhu xiao xiang
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 xia yong
  • 7 篇 xie yutong
  • 7 篇 bin dong
  • 7 篇 bjoern m. eskofi...

语言

  • 508 篇 英文
  • 88 篇 其他
  • 1 篇 中文
检索条件"机构=Data and Machine Learning Engineering"
597 条 记 录,以下是531-540 订阅
排序:
Reducing Training data Needs with Minimal Multilevel machine learning (M3L)
arXiv
收藏 引用
arXiv 2023年
作者: Heinen, Stefan Khan, Danish von Rudorff, Guido Falk Karandashev, Konstantin Arrieta, Daniel Jose Arismendi Price, Alastair J.A. Nandi, Surajit Bhowmik, Arghya Hermansson, Kersti Anatole von Lilienfeld, O. Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Chemistry University of Toronto St. George Campus TorontoON Canada University Kassel Department of Chemistry Heinrich-Plett-Str.40 Kassel34132 Germany Heinrich-Plett-Straße 40 Kassel34132 Germany University of Vienna Faculty of Physics Kolingasse 14-16 WienAT-1090 Austria Department of Chemistry-Ångström Laboratory Uppsala University Box 538 UppsalaSE-75121 Sweden Acceleration Consortium University of Toronto 80 St George St TorontoONM5S 3H6 Canada Departments of Chemistry University of Toronto St. George Campus TorontoON Canada Department of Energy Conversion and Storage DTU Anker Engelunds Vej Kgs. LyngbyDK-2800 Denmark Department of Materials Science and Engineering University of Toronto St. George campus TorontoON Canada Department of Physics University of Toronto St. George campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin Germany
For many machine learning applications in science, data acquisition, not training, is the bottleneck even when avoiding experiments and relying on computation and simulation. Correspondingly, and in order to reduce co... 详细信息
来源: 评论
Ranking-based convolutional neural network models for peptide-MHC binding prediction
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Ziqi Min, Martin Renqiang Ning, Xia Computer Science and Engineering Department Ohio State University ColumbusOH United States Machine Learning Department NEC Labs America PrincetonNJ United States Biomedical Informatics Department Ohio State University ColumbusOH United States Translational Data Analytics Institute Ohio State University ColumbusOH United States
T-cell receptors can recognize foreign peptides bound to major histocompatibility complex (MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore, identifying peptides that can bind to MHC cla... 详细信息
来源: 评论
TUdataset: A collection of benchmark datasets for learning with graphs
arXiv
收藏 引用
arXiv 2020年
作者: Morris, Christopher Kriege, Nils M. Bause, Franka Kersting, Kristian Mutzel, Petra Neumann, Marion CERC in Data Science for Real-Time Decision-Making Poly-technique MontrÃl’al Faculty of Computer Science University of Vienna Department of Computer Science TU Dortmund University Machine Learning Group TU Darmstadt Department of Computer Science University of Bonn Department of Computer Science and Engineering Washington University in St. Louis
Recently, there has been an increasing interest in (supervised) learning with graph data, especially using graph neural networks. However, the development of meaningful benchmark datasets and standardized evaluation p... 详细信息
来源: 评论
The medical algorithmic audit (vol 4, pg e384, 2022)
收藏 引用
LANCET DIGITAL HEALTH 2022年 第6期4卷 E405-E405页
作者: Liu, X. Glocker, B. McCradden, M. M. Ghassemi, M. Denniston, A. K. Oakden-Rayner, L. Academic Unit of Ophthalmology Institute of Inflammation and Ageing College of Medical and Dental Sciences University of Birmingham UK Department of Ophthalmology University Hospitals Birmingham NHS Foundation Trust Birmingham UK Moorfields Eye Hospital NHS Foundation Trust London UK Health Data Research UK London UK Birmingham Health Partners Centre for Regulatory Science and Innovation University of Birmingham Birmingham UK Biomedical Image Analysis Group Department of Computing Imperial College London London UK The Hospital for Sick Children Toronto ON Canada Dalla Lana School of Public Health Toronto ON Canada Institute for Medical Engineering and Science and Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA USA National Institute of Health Research Biomedical Research Centre for Ophthalmology Moorfields Hospital London NHS Foundation Trust London UK University College London Institute of Ophthalmology London UK Australian Institute for Machine Learning University of Adelaide Adelaide SA Australia. lauren.oakden-rayner@adelaide.edu.au
Artificial intelligence systems for health care, like any other medical device, have the potential to fail. However, specific qualities of artificial intelligence systems, such as the tendency to learn spurious correl...
来源: 评论
Increasing the robustness of the automatic IMU calibration for lower Extremity Motion Analysis
收藏 引用
Current Directions in Biomedical engineering 2018年 第1期4卷 439-442页
作者: Küderle, Arne Becker, Sebastian Disselhorst-Klug, Catherine Machine Learning and Data Analytics Lab. University of Erlangen-Nürnberg (FAU) Carl-Thiersch-Strasse 2b Erlangen Germany Department of Rehabilitation and Prevention Engineering Institute of Applied Medical Engineering RWTH Aachen University Aachen Germany
With the advances of IMU-based human motion tracking, joint angle tracking in an home environment has become a realistic goal. Achieving it, could enable novel applications in rehabilitation and sports medicine. Howev... 详细信息
来源: 评论
Complementary App-Based Yoga Home Exercise Therapy for Patients With Axial Spondyloarthritis: Usability Study
收藏 引用
JMIR Formative Research 2024年 8卷 e57185页
作者: Grube, Lara Petit, Pascal Vuillerme, Nicolas Nitschke, Marlies Nwosu, Obioma Bertrand Knitza, Johannes Krusche, Martin Seifer, Ann-Kristin Eskofier, Bjoern Schett, Georg Morf, Harriet Department of Internal Medicine 3- Rheumatology & Immunology Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Deutsches Zentrum Immuntherapie Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany AGEIS Université Grenoble Alpes Grenoble France Institut Universitaire de France Paris France LabCom Telecom4Health Orange Labs & Université Grenoble Alpes CNRS Inria Grenoble France Machine Learning and Data Analytics Lab Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Institute for Digital Medicine University Hospital of Giessen and Marburg Philipps-University Marburg Marburg Germany III. Department of Medicine University Medical Center Hamburg-Eppendorf Hamburg Germany Translational Digital Health Group Institute of AI for Health German Research Center for Environmental Health Helmholtz Zentrum München Neuherberg Germany
Background: Axial spondyloarthritis (AS) is a chronic inflammatory rheumatic disease characterized by potentially disabling inflammation of the spine and adjacent joints. Regular exercise is a cornerstone of treatment... 详细信息
来源: 评论
The Outcome of the 2022 Landslide4Sense Competition: Advanced Landslide Detection from Multi-Source Satellite Imagery
arXiv
收藏 引用
arXiv 2022年
作者: Ghorbanzadeh, Omid Xu, Yonghao Zhao, Hengwei Wang, Junjue Zhong, Yanfei Zhao, Dong Zang, Qi Wang, Shuang Zhang, Fahong Shi, Yilei Zhu, Xiao Xiang Bai, Lin Li, Weile Peng, Weihang Ghamisi, Pedram Landstraβer Hauptstraβe 5 Vienna1030 Austria The State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University 430074 China The School of Artificial Intelligence Xidian University Xian710071 China The Data Science in Earth Observation Technical University of Munich Munich80333 Germany Remote Sensing Technology Technical University of Munich Munich80333 Germany Wessling82234 Germany Munich80333 Germany The State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Chengdu University of Technology No.1 East Third Road Erxianqiao Chenghua District Chengdu610059 China Landstraβer Hauptstraβe 5 Vienna1030 Austria Helmholtz-Zentrum Dresden-Rossendorf Helmholtz Institute Freiberg for Resource Technology Machine Learning Group Chemnitzer Str. 40 Freiberg09599 Germany
The scientific outcomes of the 2022 Landslide4Sense (L4S) competition organized by the Institute of Advanced Research in Artificial Intelligence (IARAI) are presented here. The objective of the competition is to autom... 详细信息
来源: 评论
LimeSoDa: A dataset collection for benchmarking of machine learning regressors in digital soil mapping
收藏 引用
Geoderma 2025年 459卷
作者: Schmidinger, Jonas Vogel, Sebastian Barkov, Viacheslav Pham, Anh-Duy Gebbers, Robin Tavakoli, Hamed Correa, Jose Tavares, Tiago R. Filippi, Patrick Jones, Edward J. Lukas, Vojtech Boenecke, Eric Ruehlmann, Joerg Schroeter, Ingmar Kramer, Eckart Paetzold, Stefan Kodaira, Masakazu Wadoux, Alexandre M.J.-C. Bragazza, Luca Metzger, Konrad Huang, Jingyi Valente, Domingos S.M. Safanelli, Jose L. Bottega, Eduardo L. Dalmolin, Ricardo S.D. Farkas, Csilla Steiger, Alexander Horst, Taciara Z. Ramirez-Lopez, Leonardo Scholten, Thomas Stumpf, Felix Rosso, Pablo Costa, Marcelo M. Zandonadi, Rodrigo S. Wetterlind, Johanna Atzmueller, Martin Osnabrück University Joint Lab Artificial Intelligence and Data Science Osnabrück Germany Department of Agromechatronics Potsdam Germany Piracicaba Brazil The University of Sydney Sydney Institute of Agriculture Sydney Australia Mendel University in Brno Department of Agrosystems and Bioclimatology Brno Czech Republic Leibniz Institute of Vegetable and Ornamental Crops Next Generation Horticultural Systems Grossbeeren Germany Eberswalde University for Sustainable Development Landscape Management and Nature Conservation Eberswalde Germany —Soil Science and Soil Ecology Bonn Germany Tokyo University of Agriculture and Technology Institute of Agriculture Tokyo Japan LISAH Univ. Montpellier AgroParisTech INRAE IRD L'Institut Agro Montpellier France Agroscope Field-Crop Systems and Plant Nutrition Nyon Switzerland University of Wisconsin-Madison Department of Soil Science Madison United States Federal University of Viçosa Department of Agricultural Engineering Viçosa Brazil Woodwell Climate Research Center Falmouth United States Academic Coordination Santa Maria Brazil Soil Department Santa Maria Brazil Division of Environment and Natural Resources Aas Norway University of Rostock Chair of Geodesy and Geoinformatics Rostock Germany Federal Technological University of Paraná Dois Vizinhos Brazil BÜCHI Labortechnik AG Data Science Department Flawil Switzerland Imperial College London Imperial College Business School London United Kingdom University of Tübingen Department of Geosciences Tübingen Germany University of Tübingen DFG Cluster of Excellence ‘Machine Learning for Science’ Germany Bern University of Applied Sciences Competence Center for Soils Zollikofen Switzerland Simulation and Data Science Müncheberg Germany Federal University of Jataí Institute of Agricultural Sciences Jatai Brazil Federal University of Mato Grosso Instute of Agricultural and Environmental Scinces Sinop Brazil Department of Soil and Environment Skara S
Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for a given context remains challenging and contentious. Benchmarking studies on multiple datasets are neede... 详细信息
来源: 评论
LimeSoDa: A dataset Collection for Benchmarking of machine learning Regressors in Digital Soil Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Schmidinger, Jonas Vogel, Sebastian Barkov, Viacheslav Pham, Anh-Duy Gebbers, Robin Tavakoli, Hamed Correa, Jose Tavares, Tiago R. Filippi, Patrick Jones, Edward J. Lukas, Vojtech Boenecke, Eric Ruehlmann, Joerg Schroeter, Ingmar Kramer, Eckart Paetzold, Stefan Kodaira, Masakazu Wadoux, Alexandre M.J.-C. Bragazza, Luca Metzger, Konrad Huang, Jingyi Valente, Domingos S.M. Safanelli, Jose L. Bottega, Eduardo L. Dalmolin, Ricardo S.D. Farkas, Csilla Steiger, Alexander Horst, Taciara Z. Ramirez-Lopez, Leonardo Scholten, Thomas Stumpf, Felix Rosso, Pablo Costa, Marcelo M. Zandonadi, Rodrigo S. Wetterlind, Johanna Atzmueller, Martin Osnabrück University Joint Lab Artificial Intelligence and Data Science Osnabrück Germany Department of Agromechatronics Potsdam Germany Piracicaba Brazil The University of Sydney Sydney Institute of Agriculture Sydney Australia Mendel University in Brno Department of Agrosystems and Bioclimatology Brno Czech Republic Leibniz Institute of Vegetable and Ornamental Crops Next Generation Horticultural Systems Grossbeeren Germany Eberswalde University for Sustainable Development Landscape Management and Nature Conservation Eberswalde Germany Soil Science and Soil Ecology Bonn Germany Tokyo University of Agriculture and Technology Institute of Agriculture Tokyo Japan LISAH Univ. Montpellier AgroParisTech INRAE IRD L'Institut Agro Montpellier France Agroscope Field-Crop Systems and Plant Nutrition Nyon Switzerland University of Wisconsin-Madison Department of Soil Science Madison United States Federal University of Viçosa Department of Agricultural Engineering Viçosa Brazil Woodwell Climate Research Center Falmouth United States Academic Coordination Santa Maria Brazil Soil Department Santa Maria Brazil Division of Environment and Natural Resources Aas Norway University of Rostock Chair of Geodesy and Geoinformatics Rostock Germany Federal Technological University of Paraná Dois Vizinhos Brazil BÜCHI Labortechnik AG Data Science Department Flawil Switzerland Imperial College London Imperial College Business School London United Kingdom University of Tübingen Department of Geosciences Tübingen Germany University of Tübingen DFG Cluster of Excellence Machine Learning for Science’ Germany Bern University of Applied Sciences Competence Center for Soils Zollikofen Switzerland Simulation and Data Science Müncheberg Germany Federal University of Jataí Institute of Agricultural Sciences Jatai Brazil Federal University of Mato Grosso Instute of Agricultural and Environmental Scinces Sinop Brazil Department of Soil and Environment Skara
Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for a given context remains challenging and contentious. Benchmarking studies on multiple datasets are neede... 详细信息
来源: 评论
Position: Bayesian Deep learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论