咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 9 篇 计算机科学与技术...
    • 8 篇 软件工程
    • 5 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
    • 1 篇 林业工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 6 篇 管理学
    • 5 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 4 篇 理学
    • 2 篇 数学
    • 1 篇 化学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 3 篇 clustering algor...
  • 2 篇 data mining
  • 2 篇 semantics
  • 2 篇 machine learning
  • 2 篇 shape
  • 1 篇 toy manufacturin...
  • 1 篇 protein engineer...
  • 1 篇 tuning
  • 1 篇 euclidean distan...
  • 1 篇 learning systems
  • 1 篇 protein sequence
  • 1 篇 clustering
  • 1 篇 database systems
  • 1 篇 local explanatio...
  • 1 篇 pipeline process...
  • 1 篇 information anal...
  • 1 篇 task analysis
  • 1 篇 government of in...
  • 1 篇 noise measuremen...
  • 1 篇 defence

机构

  • 6 篇 database systems...
  • 5 篇 database systems...
  • 5 篇 munich center fo...
  • 3 篇 univie doctoral ...
  • 2 篇 advanced databas...
  • 2 篇 lmu munich
  • 2 篇 ds: univie unive...
  • 1 篇 bavaria munich
  • 1 篇 center for infor...
  • 1 篇 department of op...
  • 1 篇 university of vi...
  • 1 篇 database systems...
  • 1 篇 univie austria
  • 1 篇 school of electr...
  • 1 篇 department of da...
  • 1 篇 lmu munich datab...
  • 1 篇 practice directo...
  • 1 篇 chair for databa...
  • 1 篇 department of en...
  • 1 篇 data mining and ...

作者

  • 7 篇 seidl thomas
  • 7 篇 fromm michael
  • 5 篇 faerman evgeniy
  • 4 篇 berrendorf max
  • 3 篇 thomas seidl
  • 2 篇 leiber collin
  • 2 篇 durani walid
  • 2 篇 tavares gabriel ...
  • 2 篇 krzysztof kopers...
  • 2 篇 miklautz lukas
  • 2 篇 obermeier sandra
  • 2 篇 tresp volker
  • 2 篇 weber pascal
  • 2 篇 plant claudia
  • 2 篇 bhargava siddhar...
  • 2 篇 beer anna
  • 2 篇 mohammad hossein...
  • 1 篇 junior sylvio ba...
  • 1 篇 wang xinpeng
  • 1 篇 renz matthias

语言

  • 21 篇 英文
  • 2 篇 其他
检索条件"机构=Database Systems and Data Mining"
23 条 记 录,以下是1-10 订阅
排序:
CC-HIT: Creating Counterfactuals from High-Impact Transitions
CC-HIT: Creating Counterfactuals from High-Impact Transitio...
收藏 引用
International Workshops which were held in conjunction with the 6th International Conference on Process mining, ICPM 2024
作者: Xian, Zhicong Zellner, Ludwig Tavares, Gabriel Marques Seidl, Thomas Database Systems and Data Mining LMU Munich Munich Germany Munich Center for Machine Learning Munich Germany
Smooth process execution relies on high-quality insights extracted from event data. For instance, trace durations heavily affect performance and increase resource consumption. While many predictive systems aim to iden... 详细信息
来源: 评论
Diversity Aware Relevance Learning for Argument Search  43rd
Diversity Aware Relevance Learning for Argument Search
收藏 引用
43rd European Conference on Information Retrieval, ECIR 2021
作者: Fromm, Michael Berrendorf, Max Obermeier, Sandra Seidl, Thomas Faerman, Evgeniy Database Systems and Data Mining LMU Munich Munich Germany
In this work, we focus on retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises and thus cannot utilize extensive avai... 详细信息
来源: 评论
Relational and Fine-Grained Argument mining: The LMU Munich project ReMLAV within the DFG Priority Program RATIO "Robust Argumentation Machines"
收藏 引用
Datenbank-Spektrum 2020年 第2期20卷 99-105页
作者: Trautmann, Dietrich Fromm, Michael Tresp, Volker Seidl, Thomas Schütze, Hinrich Center for Information and Language Processing LMU Munich Munich Germany Database Systems and Data Mining LMU Munich Munich Germany
In our project ReMLAV, funded within the DFG Priority Program RATIO (http://***/), we focus on relational and fine-grained argument mining. In this article, we first introduce the problems we address and then summariz... 详细信息
来源: 评论
Towards a Holistic View on Argument Quality Prediction
arXiv
收藏 引用
arXiv 2022年
作者: Fromm, Michael Berrendorf, Max Reiml, Johanna Mayerhofer, Isabelle Bhargava, Siddharth Faerman, Evgeniy Seidl, Thomas Database Systems and Data Mining LMU Munich Germany
Argumentation is one of society’s foundational pillars, and, sparked by advances in NLP and the vast availability of text data, automated mining of arguments receives increasing attention. A decisive property of argu... 详细信息
来源: 评论
Diversity aware relevance learning for argument search
arXiv
收藏 引用
arXiv 2020年
作者: Fromm, Michael Berrendorf, Max Obermeier, Sandra Seidl, Thomas Faerman, Evgeniy Database Systems and Data Mining LMU Munich Germany
In this work, we focus on retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises and thus cannot utilize extensive avai... 详细信息
来源: 评论
TACAM: Topic And Context Aware Argument mining
arXiv
收藏 引用
arXiv 2019年
作者: Fromm, Michael Faerman, Evgeniy Seidl, Thomas Database Systems and Data Mining LMU Munich Germany
In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approac... 详细信息
来源: 评论
k-Nearest Neighbor based Clustering with Shape Alternation Adaptivity
k-Nearest Neighbor based Clustering with Shape Alternation A...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Yifeng Lu Yao Zhang Florian Richter Thomas Seidl Database Systems and Data Mining Group LMU Munich Germany
Existing clustering algorithms aim at identifying clusters from a single dataset. However, many applications generate a series of datasets. For example, scientists need to repeat an experiment many times to ensure rep... 详细信息
来源: 评论
Argument mining driven analysis of peer-reviews
arXiv
收藏 引用
arXiv 2020年
作者: Fromm, Michael Faerman, Evgeniy Berrendorf, Max Bhargava, Siddharth Qi, Ruoxia Zhang, Yao Dennert, Lukas Selle, Sophia Mao, Yang Seidl, Thomas Database Systems and Data Mining LMU Munich Germany LMU Munich Germany
Peer reviewing is a central process in modern research and essential for ensuring high quality and reliability of published work. At the same time, it is a time-consuming process and increasing interest in emerging fi...
来源: 评论
Keynote: data mining on Process data
Keynote: Data Mining on Process Data
收藏 引用
International Conference on Process mining (ICPM)
作者: Thomas Seidl Computer science and head of the Database Systems and Data Mining group at LMU Munich
data mining and Process mining - is one just a variant of the other, or do worlds separate the two areas from each other? The notions sound so similar but the contents sometimes look differently, so respective researc...
来源: 评论
Conifer seedling detection in UAV-Imagery with RGB-depth information
arXiv
收藏 引用
arXiv 2021年
作者: Jooste, Jason Fromm, Michael Schubert, Matthias LMU Munich Germany Database Systems and Data Mining LMU Munich Germany
Monitoring of reforestation is currently being considerably streamlined through the use of drones and image recognition algorithms, which have already proven to be effective on colour imagery. In addition to colour im... 详细信息
来源: 评论