咨询与建议

限定检索结果

文献类型

  • 63 篇 期刊文献
  • 29 篇 会议
  • 1 册 图书

馆藏范围

  • 93 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 47 篇 计算机科学与技术...
    • 46 篇 软件工程
    • 22 篇 生物工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 9 篇 控制科学与工程
    • 9 篇 化学工程与技术
    • 8 篇 机械工程
    • 6 篇 交通运输工程
    • 2 篇 动力工程及工程热...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 纺织科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 林业工程
    • 1 篇 安全科学与工程
  • 38 篇 理学
    • 22 篇 生物学
    • 14 篇 物理学
    • 11 篇 数学
    • 7 篇 化学
    • 3 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 10 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 8 篇 object detection
  • 8 篇 feature extracti...
  • 7 篇 deep learning
  • 6 篇 three-dimensiona...
  • 6 篇 convolution
  • 6 篇 training
  • 5 篇 object recogniti...
  • 4 篇 deep neural netw...
  • 4 篇 computer archite...
  • 4 篇 large dataset
  • 4 篇 face recognition
  • 4 篇 computer vision
  • 3 篇 semantic segment...
  • 3 篇 task analysis
  • 3 篇 computational mo...
  • 3 篇 semantics
  • 3 篇 benchmarking
  • 3 篇 autonomous vehic...
  • 3 篇 two dimensional ...
  • 3 篇 solid modeling

机构

  • 27 篇 national enginee...
  • 22 篇 national enginee...
  • 21 篇 institute of dee...
  • 17 篇 baidu research
  • 12 篇 beihang universi...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 haikou key labor...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 3 篇 university of sc...
  • 3 篇 school of automa...
  • 3 篇 national laborat...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 yang ruigang
  • 9 篇 wan jun
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 dai yuchao
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 ruigang yang
  • 5 篇 zhu yu
  • 5 篇 xiong hui
  • 5 篇 dingfu zhou
  • 4 篇 escalera sergio
  • 4 篇 li yanjing

语言

  • 87 篇 英文
  • 6 篇 其他
检索条件"机构=Deep Learning and Application"
93 条 记 录,以下是31-40 订阅
排序:
Key Information Extraction from Mobile-Captured Vietnamese Receipt Images using Graph Neural Networks Approach  6
Key Information Extraction from Mobile-Captured Vietnamese R...
收藏 引用
6th International Conference on Green Technology and Sustainable Development, GTSD 2022
作者: Pham, Van Dung Nguyen, Le Quan Pham, Nhat Truong Nguyen, Bao Hung Minh Dang, Due Ngoe Nguyen, Sy Dzung Deep Learning and Application Ho Chi Minh City Viet Nam Sejong University Seoul Korea Republic of Institute for Computational Science Ton Duc Thang University Ho Chi Minh City Viet Nam SK-Global JSC Ho Chi Minh City Viet Nam FPT University Computing Fundamental Department Ho Chi Minh City Viet Nam
Information extraction and retrieval are growing fields that have a significant role in document parser and analysis systems. Researches and applications developed in recent years show the numerous difficulties and ob... 详细信息
来源: 评论
Fully transformer networks for semantic image segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Sitong Wu, Tianyi Lin, Fangjian Tian, Shengwei Guo, Guodong Institute of Deep Learning Baidu Research Beijing100085 China National Engineering Laboratory for Deep Learning Technology and Application Beijing100085 China Shengwei Tian are with School of Software XinJiang University Urumqi China
Transformers have shown impressive performance in various natural language processing and computer vision tasks, due to the capability of modeling long-range dependencies. Recent progress has demonstrated that combini... 详细信息
来源: 评论
Mapfusion: A general framework for 3D object detection with HDMaps
arXiv
收藏 引用
arXiv 2021年
作者: Fang, Jin Zhou, Dingfu Song, Xibin Zhang, Liangjun Robotics and Autonomous Driving Laboratory Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China
3D object detection is a key perception component in autonomous driving. Most recent approaches are based on Lidar sensors only or fused with cameras. Maps (e.g., High Definition Maps), a basic infrastructure for inte... 详细信息
来源: 评论
TransFER: learning Relation-aware Facial Expression Representations with Transformers
TransFER: Learning Relation-aware Facial Expression Represen...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Fanglei Xue Qiangchang Wang Guodong Guo University of Chinese Academy of Sciences Beijing China Chinese Academy of Sciences Beijing China West Virginia University Morgantown USA Institute of Deep Learning Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Facial expression recognition (FER) has received increasing interest in computer vision. We propose the Trans-FER model which can learn rich relation-aware local representations. It mainly consists of three components... 详细信息
来源: 评论
Nested Collaborative learning for Long-Tailed Visual Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Jun Tan, Zichang Wan, Jun Lei, Zhen Guo, Guodong CBSR&NLPR Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science&Innovation Chinese Academy of Sciences Hong Kong
The networks trained on the long-tailed dataset vary remarkably, despite the same training settings, which shows the great uncertainty in long-tailed learning. To alleviate the uncertainty, we propose a Nested Collabo... 详细信息
来源: 评论
ProposalContrast: Unsupervised Pre-training for LiDAR-based 3D Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Yin, Junbo Zhou, Dingfu Zhang, Liangjun Fang, Jin Xu, Cheng-Zhong Shen, Jianbing Wang, Wenguan School of Computer Science Beijing Institute of Technology China Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China SKL-IOTSC CIS University of Macau China ReLER AAII University of Technology Sydney Australia
Existing approaches for unsupervised point cloud pre-training are constrained to either scene-level or point/voxel-level instance discrimination. Scene-level methods tend to lose local details that are crucial for rec... 详细信息
来源: 评论
Semi-supervised 3D Object Detection with Proficient Teachers
arXiv
收藏 引用
arXiv 2022年
作者: Yin, Junbo Fang, Jin Zhou, Dingfu Zhang, Liangjun Xu, Cheng-Zhong Shen, Jianbing Wang, Wenguan School of Computer Science Beijing Institute of Technology China Baidu Research United States National Engineering Laboratory of Deep Learning Technology and Application China SKL-IOTSC Cis University of Macau China ReLER Aaii University of Technology Sydney Australia
Dominated point cloud-based 3D object detectors in autonomous driving scenarios rely heavily on the huge amount of accurately labeled samples, however, 3D annotation in the point cloud is extremely tedious, expensive ... 详细信息
来源: 评论
Q-ViT: accurate and fully quantized low-bit vision transformer  22
Q-ViT: accurate and fully quantized low-bit vision transform...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Yanjing Li Sheng Xu Baochang Zhang Xianbin Cao Peng Gao Guodong Guo Beihang University Beijing P.R.China Beihang University Beijing P.R.China and Zhongguancun Laboratory Beijing P.R.China Shanghai Artificial Intelligence Laboratory Shanghai P.R.China Institute of Deep Learning Baidu Research Beijing P.R.China and National Engineering Laboratory for Deep Learning Technology and Application Beijing P.R.China
The large pre-trained vision transformers (ViTs) have demonstrated remarkable performance on various visual tasks, but suffer from expensive computational and memory cost problems when deployed on resource-constrained...
来源: 评论
Vietnamese Scene Text Detection and Recognition using deep learning: An Empirical Study  6
Vietnamese Scene Text Detection and Recognition using Deep L...
收藏 引用
6th International Conference on Green Technology and Sustainable Development, GTSD 2022
作者: Pham, Nhat Truong Pham, Van Dung Nguyen-Van, Qui Nguyen, Bao Hung Minh Dang, Duc Ngoc Nguyen, Sy Dzung Institute for Computational Science Ton Duc Thang University Ho Chi Minh City Viet Nam Deep Learning and Application Ho Chi Minh City Viet Nam Ho Chi Minh City University of Technology Department of Telecommunications Engineering Ho Chi Minh City Viet Nam SK-Global JSC Ho Chi Minh City Viet Nam FPT University Computing Fundamental Department Ho Chi Minh City Viet Nam
Scene text detection and recognition are vital challenging tasks in computer vision, which are to detect and recognize sequences of texts in natural scenes. Recently, researchers have investigated a lot of state-of-Th... 详细信息
来源: 评论
LAE : Long-tailed Age Estimation
arXiv
收藏 引用
arXiv 2021年
作者: Bao, Zenghao Tan, Zichang Zhu, Yu Wan, Jun Ma, Xibo Lei, Zhen Guo, Guodong CBSR NLPR Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence University of Chinese Academy of Sciences Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science & Innovation Chinese Academy of Sciences Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application
Facial age estimation is an important yet very challenging problem in computer vision. To improve the performance of facial age estimation, we first formulate a simple standard baseline and build a much strong one by ... 详细信息
来源: 评论