咨询与建议

限定检索结果

文献类型

  • 17 篇 会议

馆藏范围

  • 17 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 医学
  • 3 篇 工学
    • 2 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 2 篇 生物工程
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 理学
    • 1 篇 生物学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 4 篇 electroencephalo...
  • 4 篇 accuracy
  • 3 篇 mobile robots
  • 3 篇 decoding
  • 2 篇 cars
  • 2 篇 microphones
  • 2 篇 trajectory
  • 2 篇 training
  • 1 篇 stroke patient
  • 1 篇 wheelchairs
  • 1 篇 legged locomotio...
  • 1 篇 building blocks
  • 1 篇 improved recogni...
  • 1 篇 error related
  • 1 篇 electrodes impla...
  • 1 篇 humidity
  • 1 篇 bluetooth
  • 1 篇 noise measuremen...
  • 1 篇 humans’ movement
  • 1 篇 biomedical engin...

机构

  • 2 篇 embedded systems...
  • 2 篇 institute pervas...
  • 2 篇 defitech chair i...
  • 2 篇 defitech foundat...
  • 2 篇 wearable computi...
  • 2 篇 department of br...
  • 2 篇 department of in...
  • 2 篇 defitech foundat...
  • 1 篇 wearable computi...
  • 1 篇 defitech foundat...
  • 1 篇 ecole polytechni...
  • 1 篇 embedded systems...
  • 1 篇 institute for pe...
  • 1 篇 laboratory of pr...
  • 1 篇 defitech foundat...
  • 1 篇 learning algorit...
  • 1 篇 defitech chair o...
  • 1 篇 defitech chair i...
  • 1 篇 institute for pe...
  • 1 篇 universidad tecn...

作者

  • 10 篇 ricardo chavarri...
  • 5 篇 josé del r. mill...
  • 4 篇 jose del r. mill...
  • 3 篇 huaijian zhang
  • 3 篇 lucian gheorghe
  • 2 篇 hesam sagha
  • 2 篇 seong-whan lee
  • 1 篇 jose del. r. mil...
  • 1 篇 david sebastianl...
  • 1 篇 a. calatroni
  • 1 篇 j. doppler
  • 1 篇 creatura marco
  • 1 篇 holleczek t.
  • 1 篇 holzmann clemens
  • 1 篇 kilian förster
  • 1 篇 alberto calatron...
  • 1 篇 wagner f.
  • 1 篇 hamidreza bayati
  • 1 篇 g. troester
  • 1 篇 p. lukowicz

语言

  • 17 篇 英文
检索条件"机构=Defitech Foundation Chair in Non-Invasive Brain-Machine Interface"
17 条 记 录,以下是11-20 订阅
排序:
Self-paced Movement Intention Detection from Human brain Signals: invasive and non-invasive EEG
Self-paced Movement Intention Detection from Human Brain Sig...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
作者: Eileen Lew Ricardo Chavarriaga Huaijian Zhang Margitta Seeck José del R. Millán Defitech Chair in Non-Invasive Brain-Machine Interface Center for Neuroprosthetics School of Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland Laboratory of Presurgical Epilepsy Evaluation Program of Functional Neurology and Neurosurgery University Hospital of Geneva 1211 Geneva Switzerland
Neural signatures of humans’ movement intention can be exploited by future neuroprosthesis. We propose a method for detecting self-paced upper limb movement intention from brain signals acquired with both invasive an... 详细信息
来源: 评论
Detecting anomalies to improve classification performance in opportunistic sensor networks
Detecting anomalies to improve classification performance in...
收藏 引用
IEEE Annual Conference on Pervasive Computing and Communications Workshops (PerCom)
作者: Hesam Sagha José del R. Millán Ricardo Chavarriaga Defitech Foundation Chair in Non-Invasive Brain-Machine Interface Ecole Poly technique Federale de Lausanne (EPFL) 1015 Lausanne Switzerland
Anomalies and changes in sensor networks which are deployed for activity recognition may abate the classification performance. Detection of anomalies followed by compensatory reaction would ameliorate the performance.... 详细信息
来源: 评论
Phase-based features for Motor Imagery brain-Computer interfaces
Phase-based features for Motor Imagery Brain-Computer Interf...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
作者: Benjamin Hamner Robert Leeb Michele Tavella Jose del R. Millan Defitech Chair on Non-Invasive Brain-Machine Interface Center for Neuroprosthetics School of Engineering Ecole Polytechnique Federal de Lausanne
Motor imagery (MI) brain-computer interfaces (BCIs) translate a subject's motor intention to a command signal. Most MI BCIs use power features in the mu or beta rhythms, while several results have been reported us... 详细信息
来源: 评论
Recording a complex, multi modal activity data set for context recogntion  23
Recording a complex, multi modal activity data set for conte...
收藏 引用
23th International Conference on Architecture of Computing Systems 2010, ARCS 2010
作者: Lukowicz, P. Pirkl, G. Bannach, D. Wagner, F. Calatroni, A. Förster, K. Holleczek, T. Rossi, M. Roggen, D. Troester, G. Doppler, J. Holzmann, C. Riener, A. Ferscha, A. Chavarriaga, R. Embedded Systems Lab University of Passau Germany Wearable Computing Lab ETH Switzerland Institute Pervasive Computing JKU Linz Austria Defitech Foundation Chair in Non-Invasive Brain-Machine Interface EPFL Lausanne Switzerland
Publicly available data sets are increasingly becoming an important research tool in context recognition. However, due to the diversity and complexity of the domain it is difficult to provide standard recordings that ...
来源: 评论
Collecting complex activity datasets in highly rich networked sensor environments
Collecting complex activity datasets in highly rich networke...
收藏 引用
7th International Conference on Networked Sensing Systems, INSS 2010
作者: Roggen, Daniel Calatroni, Alberto Rossi, Mirco Holleczek, Thomas Förster, Kilian Tröster, Gerhard Lukowicz, Paul Bannach, David Pirkl, Gerald Ferscha, Alois Doppler, Jakob Holzmann, Clemens Kurz, Marc Holl, Gerald Chavarriaga, Ricardo Sagha, Hesam Bayati, Hamidreza Creatura, Marco Del R. Millàn, Jose Wearable Computing Laboratory ETH Zurich Switzerland Institute for Pervasive Computing Johannes Kepler University Linz Austria Institute for Pervasive Computing Johannes Kepler University Linz Austria Defitech Foundation Chair in Non-Invasive Brain-Machine Interface Ecole Polytechnique Fédérale Lausarme Switzerland Department of Informatics Systems and Telematics University of Genova Italy
We deployed 72 sensors of 10 modalities in 15 wireless and wired networked sensor systems in the environment, in objects, and on the body to create a sensor-rich environment for the machine recognition of human activi... 详细信息
来源: 评论
Recording a Complex, Multi Modal Activity Data Set for Context Recognition
Recording a Complex, Multi Modal Activity Data Set for Conte...
收藏 引用
23th International Conference on Architecture of Computing Systems 2010
作者: P. Lukowicz G. Pirkl D. Bannach F. Wagner A. Calatroni K. Foerster T. Holleczek M. Rossi D. Roggen G. Troester J. Doppler C. Holzmann A. Riener A. Ferscha R. Chavarriaga Embedded Systems Lab University of Passau Germany Wearable Computing Lab ETH Switzerland Institute Pervasive Computing JKU Linz Austria Defitech Foundation Chair in Non-Invasive Brain-Machine Interface EPFL Lausanne Switzerland
Publicly available data sets are increasingly becoming an important research tool in context recognition. However, due to the diversity and complexity of the domain it is difficult to provide standard recordings that ... 详细信息
来源: 评论
Collecting complex activity datasets in highly rich networked sensor environments
Collecting complex activity datasets in highly rich networke...
收藏 引用
International Conference on Networked Sensing Systems (INSS)
作者: Daniel Roggen Alberto Calatroni Mirco Rossi Thomas Holleczek Kilian Förster Gerhard Tröster Paul Lukowicz David Bannach Gerald Pirkl Alois Ferscha Jakob Doppler Clemens Holzmann Marc Kurz Gerald Holl Ricardo Chavarriaga Hesam Sagha Hamidreza Bayati Marco Creatura José del R. Millàn Wearable Computing Laboratory ETH Zürich Switerland Embedded Systems Laboratory University of Passau Germany Institute for Pervasive Computing Johannes Kepler University Linz Linz Austria Defitech Foundation Chair in Non-Invasive Brain-Machine Interface Ecole Polytechnique Fédérale de Lausanne Switzerland Ecole Polytechnique Fédérale de Lausanne Switzerland Department of Informatics Systems and Telematics University of Genova Italy
We deployed 72 sensors of 10 modalities in 15 wireless and wired networked sensor systems in the environment, in objects, and on the body to create a sensor-rich environment for the machine recognition of human activi... 详细信息
来源: 评论