Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing *** study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual *** memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program ***,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 *** larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electricalprogramming abilities of the *** array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%*** study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.
This study examines the impact of environmental, social, and governance (ESG) factors on economic investment from a statistical perspective, aiming to develop a tested investment strategy that capitalizes on the conne...
详细信息
The traditional plasma etching process for defining micro-LED pixels could lead to significant sidewall *** near sidewall regions act as non-radiative recombination centers and paths for current leakage,significantly ...
详细信息
The traditional plasma etching process for defining micro-LED pixels could lead to significant sidewall *** near sidewall regions act as non-radiative recombination centers and paths for current leakage,significantly deteriorating device *** this study,we demonstrated a novel selective thermal oxidation(STO)method that allowed pixel definition without undergoing plasma damage and subsequent dielectric *** annealing in ambient air oxidized and reshaped the LED structure,such as p-layers and InGaN/GaN multiple quantum ***,the pixel areas beneath the pre-deposited SiO_(2)layer were selectively and effectively *** was demonstrated that prolonged thermal annealing time enhanced the insulating properties of the oxide,significantly reducing LED leakage ***,applying a thicker SiO_(2)protective layer minimized device resistance and boosted device efficiency *** the STO method,InGaN green micro-LED arrays with 50-,30-,and 10-μm pixel sizes were manufactured and *** results indicated that after 4 h of air annealing and with a 3.5-μm SiO_(2)protective layer,the 10-μm pixel array exhibited leakage currents density 1.2×10^(-6)A/cm^(2)at-10 V voltage and a peak on-wafer external quantum efficiency of~6.48%.This work suggests that the STO method could become an effective approach for future micro-LED manufacturing to mitigate adverse LED efficiency size effects due to the plasma etching and improve device ***-LEDs fabricated through the STO method can be applied to micro-displays,visible light communication,and optical interconnect-based *** planar pixel geometry will provide more possibilities for the monolithic integration of driving circuits with ***,the STO method is not limited to micro-LED fabrication and can be extended to design other III-nitride devices,such as photodetectors,laser diodes,high-electron-mobility transistors
Tip-enhanced Raman spectroscopy(TERS)imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy(SERS)and scanning probe microscopy(SPM),such as the high chemic...
详细信息
Tip-enhanced Raman spectroscopy(TERS)imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy(SERS)and scanning probe microscopy(SPM),such as the high chemical sensitivity from the former and the nanoscale spatial resolution from the *** advantages make TERS an essential nanospectroscopic characterization technique for chemical analysis,materials science,bio-sensing,*** probes,the most critical factor determining the TERS imaging quality,are expected to provide a highly confined electromagnetic hotspot with a minimized scattering background for the generation of Raman signals with high spatial *** two decades of development,numerous probe design concepts have been proposed and *** review provides a comprehensive overview of the state-of-the-art TERS probe designs,from the working mechanism to the practical *** start with reviewing the recent development of TERS configurations and the corresponding working mechanisms,including the SPM platforms,optical excitation/collection techniques,and probe preparation *** then review the emerging novel TERS probe designs,including the remote-excitation probes,the waveguide-based nanofocusing probes,the metal-coated nanofocusing probes,the nanowire-assisted selective-coupling probes,and the tapered metal-insulator-metal *** discussion focuses on a few critical aspects,including the surface-plasmon-polariton(SPP)hotspot excitation technique,conversion efficiency,working frequency,and *** the end,we review the latest TERS applications and give a perspective on the future of TERS.
Wide-bandgap semiconductors exhibit much larger energybandgaps than traditional semiconductors such as silicon,rendering them very promising to be applied in the fields of electronics and *** examples of semiconductor...
详细信息
Wide-bandgap semiconductors exhibit much larger energybandgaps than traditional semiconductors such as silicon,rendering them very promising to be applied in the fields of electronics and *** examples of semiconductors include SiC,GaN,ZnO,and diamond,which exhibitdistinctive characteristics such as elevated mobility and *** characteristics facilitate the operation of awide range of devices,including energy-efficient bipolar junctiontransistors(BJTs)and metal-oxide-semiconductor field-effecttransistors(MOSFETs),as well as high-frequency high-electronmobility transistors(HEMTs)and optoelectronic components suchas light-emitting diodes(LEDs)and *** semiconductorsare used in building integrated circuits(ICs)to facilitate theoperation of power electronics,computer devices,RF systems,andother optoelectronic *** breakthroughs includevarious applications such as imaging,optical communication,*** them,the field of power electronics has witnessedtremendous progress in recent years with the development of widebandgap(WBG)semiconductor devices,which is capable ofswitching large currents and voltages rapidly with low ***,it has been proven challenging to integrate these deviceswith silicon complementary metal oxide semiconductor(CMOS)logic circuits required for complex control *** monolithic integration of silicon CMOS with WBG devices increases thecomplexity of fabricating monolithically integrated smart integrated circuits(ICs).This review article proposes implementingCMOS logic directly on the WBG platform as a ***,achieving the CMOS functionalities with the adoption of WBGmaterials still remains a significant *** article summarizesthe research progress in the fabrication of integrated circuitsadopting various WBG materials ranging from SiC to diamond,with the goal of building future smart power ICs.
Recurrent Neural Networks (RNNs) are commonly used in data-driven approaches to estimate the Remaining Useful Lifetime (RUL) of power electronic devices. RNNs are preferred because their intrinsic feedback mechanisms ...
详细信息
Video embedding is the pivot in Temporal Action Detection (TAD). Once the video embedding can robustly capture the essence of actions and perceive activities in complex scenes, the TAD model can more accurately locali...
详细信息
作者:
Butola, RajatLi, YimingKola, Sekhar ReddyNational Yang Ming Chiao Tung University
Parallel and Scientific Computing Laboratory Electrical Engineering and Computer Science International Graduate Program Hsinchu300093 Taiwan Institute of Pioneer Semiconductor Innovation
The Institute of Artificial Intelligence Innovation National Yang Ming Chiao Tung University Parallel and Scientific Computing Laboratory Electrical Engineering and Computer Science International Graduate Program The Institute of Communications Engineering the Institute of Biomedical Engineering Department of Electronics and Electrical Engineering Hsinchu300093 Taiwan
In this work, a dynamic weighting-artificial neural network (DW-ANN) methodology is presented for quick and automated compact model (CM) generation. It takes advantage of both TCAD simulations for high accuracy and SP...
详细信息
In offshore aquaculture operations, personnel equipped with diving gear are often necessary to inspect the underwater net cages for damage, particularly on the sea floor. This manual inspection process is time-consumi...
详细信息
暂无评论