咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议
  • 1 册 图书

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 6 篇 计算机科学与技术...
    • 5 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 生物工程
    • 1 篇 网络空间安全
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 1 篇 理学
    • 1 篇 生物学

主题

  • 1 篇 large dataset
  • 1 篇 data mining and ...
  • 1 篇 biomedicine gene...
  • 1 篇 life sciences, g...
  • 1 篇 neural network m...
  • 1 篇 batch data proce...
  • 1 篇 computational bi...
  • 1 篇 computer imaging...
  • 1 篇 information stor...
  • 1 篇 recurrent neural...
  • 1 篇 intelligent syst...

机构

  • 2 篇 cluster of excel...
  • 2 篇 human and machin...
  • 2 篇 autonomous learn...
  • 2 篇 dep. for compute...
  • 2 篇 department of bi...
  • 2 篇 neuro-cognitive ...
  • 2 篇 helmholtz center...
  • 1 篇 mathematics and ...
  • 1 篇 dep. of mathemat...
  • 1 篇 department of co...
  • 1 篇 machine learning...
  • 1 篇 fraunhofer cente...
  • 1 篇 dep. of computer...
  • 1 篇 fraunhofer iais ...
  • 1 篇 didy & machine l...
  • 1 篇 machine learning...
  • 1 篇 dep. of mathemat...

作者

  • 2 篇 otte sebastian
  • 2 篇 fischer jonas
  • 2 篇 hossain intekhab
  • 2 篇 butz martin v.
  • 2 篇 gumbsch christia...
  • 2 篇 burkholz rebekka
  • 2 篇 wu charley
  • 2 篇 quackenbush john
  • 2 篇 humaidan dania
  • 1 篇 pick annika
  • 1 篇 barbara hammer
  • 1 篇 hammer barbara
  • 1 篇 horváth tamás
  • 1 篇 gpfert christina
  • 1 篇 wrobel stefan
  • 1 篇 pfannschmidt luk...
  • 1 篇 michael biehl
  • 1 篇 neumann ursula
  • 1 篇 michel verleysen
  • 1 篇 heider dominik

语言

  • 6 篇 英文
  • 1 篇 其他
检索条件"机构=Dep. for Computer Vision and Machine Learning"
7 条 记 录,以下是1-10 订阅
排序:
Support estimation in frequent itemset mining by locality sensitive hashing
Support estimation in frequent itemset mining by locality se...
收藏 引用
2019 Conference on "learning, Knowledge, Data, Analytics", LWDA 2019
作者: Pick, Annika Horváth, Tamás Wrobel, Stefan Fraunhofer IAIS Sankt Augustin Germany Dep. of Computer Science University of Bonn Germany Fraunhofer Center for Machine Learning Sankt Augustin Germany
The main computational effort in generating all frequent itemsets in a transactional database is in the step of deciding whether an itemset is frequent, or not. We present a method for estimating itemset supports with... 详细信息
来源: 评论
Pruning neural network models for gene regulatory dynamics using data and domain knowledge  38
Pruning neural network models for gene regulatory dynamics u...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hossain, Intekhab Fischer, Jonas Burkholz, Rebekka Quackenbush, John Department of Biostatistics Harvard T.H. Chan School of Public Health BostonMA02115 United States Dep. for Computer Vision and Machine Learning Max Planck Institute for Informatics Saarbrücken Germany Helmholtz Center CISPA for Information Security Saarbrücken Germany
The practical utility of machine learning models in the sciences often hinges on their interpretability. It is common to assess a model's merit for scientific discovery, and thus novel insights, by how well it ali...
来源: 评论
Latent Event-Predictive Encodings through Counterfactual Regularization  43
Latent Event-Predictive Encodings through Counterfactual Reg...
收藏 引用
43rd Annual Meeting of the Cognitive Science Society: Comparative Cognition: Animal Minds, CogSci 2021
作者: Humaidan, Dania Otte, Sebastian Gumbsch, Christian Wu, Charley Butz, Martin V. Neuro-Cognitive Modeling Group Dep. of Psychology Dep. of Computer Science Sand 14 Tübingen72076 Germany Cluster of Excellence – Machine Learning for Science Maria-von-Linden-Str. 6 Tübingen72076 Germany Autonomous Learning Group MPI for Intelligent Systems Tübingen72076 Germany Human and Machine Cognition Lab Maria-von-Linden-Str. 6 Tübingen72076 Germany
A critical challenge for any intelligent system is to infer structure from continuous data streams. Theories of event-predictive cognition suggest that the brain segments sensorimotor information into compact event en... 详细信息
来源: 评论
FRI - Feature relevance intervals for interpretable and interactive data exploration
arXiv
收藏 引用
arXiv 2019年
作者: Pfannschmidt, Lukas Gpfert, Christina Neumann, Ursula Heider, Dominik Hammer, Barbara DiDy & Machine learning group Bielefeld University Bielefeld Germany Machine learning group Bielefeld University Bielefeld Germany Dep. of Mathematics and Computer Science University of Marburg Marburg Germany
Most existing feature selection methods are insufficient for analytic purposes as soon as high dimensional data or redundant sensor signals are dealt with since features can be selected due to spurious effects or corr... 详细信息
来源: 评论
Similarity-Based Clustering  1
收藏 引用
丛书名: Lecture Notes in computer Science
1000年
作者: Michael Biehl Barbara Hammer Michel Verleysen Thomas Villmann
Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as... 详细信息
来源: 评论
Pruning neural network models for gene regulatory dynamics using data and domain knowledge
arXiv
收藏 引用
arXiv 2024年
作者: Hossain, Intekhab Fischer, Jonas Burkholz, Rebekka Quackenbush, John Department of Biostatistics Harvard T.H. Chan School of Public Health BostonMA02115 United States Dep. for Computer Vision and Machine Learning Max Planck Institute for Informatics Saarbrücken Germany Helmholtz Center CISPA for Information Security Saarbrücken Germany
The practical utility of machine learning models in the sciences often hinges on their interpretability. It is common to assess a model's merit for scientific discovery, and thus novel insights, by how well it ali... 详细信息
来源: 评论
Latent event-predictive encodings through counterfactual regularization
arXiv
收藏 引用
arXiv 2021年
作者: Humaidan, Dania Otte, Sebastian Gumbsch, Christian Wu, Charley Butz, Martin V. Neuro-Cognitive Modeling Group Dep. of Psychology Dep. of Computer Science Sand 14 Tübingen72076 Germany Cluster of Excellence – Machine Learning for Science Maria-von-Linden-Str. 6 Tübingen72076 Germany Autonomous Learning Group MPI for Intelligent Systems Tübingen72076 Germany Human and Machine Cognition Lab Maria-von-Linden-Str. 6 Tübingen72076 Germany
A critical challenge for any intelligent system is to infer structure from continuous data streams. Theories of event-predictive cognition suggest that the brain segments sensorimotor information into compact event en... 详细信息
来源: 评论