咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 464 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是201-210 订阅
排序:
CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Hanchong Li, Jieyu Chen, Lu Cao, Ruisheng Zhang, Yunyan Huang, Yu Zheng, Yefeng Yu, Kai X-LANCE Lab Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence SJTU AI Institute Shanghai Jiao Tong University Shanghai China Tencent Jarvis Lab Shenzhen China
The cross-domain text-to-SQL task aims to build a system that can parse user questions into SQL on complete unseen databases, and the single-domain text-to-SQL task evaluates the performance on identical databases. Bo... 详细信息
来源: 评论
Generalizable Audio Deepfake Detection via Latent Space Refinement and Augmentation
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Wen Gu, Yanmei Wang, Zhiming Zhu, Huijia Qian, Yanmin Auditory Cognition and Computational Acoustics Lab MoE Key Lab of Artificial Intelligence AI Institute Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China SJTU Paris Elite lnstitute of Technology China Ant Group Shanghai China
Advances in speech synthesis technologies, like text-to-speech (TTS) and voice conversion (VC), have made detecting deepfake speech increasingly challenging. Spoofing countermeasures often struggle to generalize effec... 详细信息
来源: 评论
FRONT-END ADAPTER: ADAPTING FRONT-END INPUT OF SPEECH BASED SELF-SUPERVISED LEARNING FOR SPEECH RECOGNITION
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Xie Ma, Ziyang Tang, Changli Wang, Yujin Zheng, Zhisheng MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China Department of Electronic Engineering Tsinghua University Beijing China
Recent years have witnessed a boom in self-supervised learning (SSL) in various areas including speech processing. Speech based SSL models present promising performance in a range of speech related tasks. However, the... 详细信息
来源: 评论
Compressing KV Cache for Long-Context LLM Inference with Inter-Layer Attention Similarity
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Da Chen, Lu Zhang, Situo Miao, Yuxun Zhu, Su Chen, Zhi Xu, Hongshen Li, Hanqi Fan, Shuai Pan, Lei Yu, Kai X-LANCE Lab Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence SJTU AI Institute Shanghai Jiao Tong University Shanghai China AISpeech Co. Ltd. Suzhou China ByteDance China
The increasing context window size in Large Language Models (LLMs), such as the GPT and LLaMA series, has improved their ability to tackle complex, long-text tasks, but at the cost of inference efficiency, particularl... 详细信息
来源: 评论
Improving Few-Shot Learning for Talking Face System with TTS Data Augmentation
Improving Few-Shot Learning for Talking Face System with TTS...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Qi Chen Ziyang Ma Tao Liu Xu Tan Qu Lu Kai Yu Xie Chen Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Shanghai Jiao Tong University China Microsoft Research Asia Shanghai Media Tech
Audio-driven talking face has attracted broad interest from academia and industry recently. However, data acquisition and labeling in audio-driven talking face are labor-intensive and costly. The lack of data resource... 详细信息
来源: 评论
DDTSE: DISCRIMINATIVE DIFFUSION MODEL FOR TARGET SPEECH EXTRACTION
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Leying Qian, Yao Yu, Linfeng Wang, Heming Yang, Hemin Liu, Shujie Zhou, Long Qian, Yanmin Auditory Cognition and Computational Acoustics Lab MoE Key Lab of Artificial Intelligence AI Institute Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China Microsoft United States
Diffusion models have gained attention in speech enhancement tasks, providing an alternative to conventional discriminative methods. However, research on target speech extraction under multi-speaker noisy conditions r... 详细信息
来源: 评论
Large Language Models Are Semi-Parametric Reinforcement Learning Agents
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Danyang Chen, Lu Zhang, Situo Xu, Hongshen Zhao, Zihan Yu, Kai X-LANCE Lab Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence SJTU AI Institute Shanghai Jiao Tong University Shanghai China Suzhou Laboratory Suzhou China
Inspired by the insights in cognitive science with respect to human memory and reasoning mechanism, a novel evolvable LLM-based (Large Language Model) agent framework is proposed as REMEMBERER. By equipping the LLM wi... 详细信息
来源: 评论
TARGET SOUND EXTRACTION WITH VARIABLE CROSS-MODALITY CLUES
arXiv
收藏 引用
arXiv 2023年
作者: Li, Chenda Qian, Yao Chen, Zhuo Wang, Dongmei Yoshioka, Takuya Liu, Shujie Qian, Yanmin Zeng, Michael MoE Key Lab of Artificial Intelligence AI Institute China X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University China Microsoft RedmondWA United States
Automatic target sound extraction (TSE) is a machine learning approach to mimic the human auditory perception capability of attending to a sound source of interest from a mixture of sources. It often uses a model cond... 详细信息
来源: 评论
Exploring Time-Frequency Domain Target Speaker Extraction For Causal and Non-Causal Processing
Exploring Time-Frequency Domain Target Speaker Extraction Fo...
收藏 引用
IEEE Workshop on Automatic Speech Recognition and Understanding
作者: Wangyou Zhang Lei Yang Yanmin Qian Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China Samsung Research China – Beijing (SRC-B)
In recent years, target speaker extraction (TSE) has drawn increasing interest as an alternative to speech separation in realistic applications. While time-domain methods have been widely used in recent studies to ach...
来源: 评论
ONE-SHOT SENSITIVITY-AWARE MIXED SPARSITY PRUNING FOR LARGE LANGUAGE MODELS
arXiv
收藏 引用
arXiv 2023年
作者: Shao, Hang Liu, Bei Xiao, Bo Zeng, Ke Wan, Guanglu Qian, Yanmin Auditory Cognition and Computational Acoustics Lab MoE Key Lab of Artificial Intelligence AI Institute Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China Meituan Beijing China
Various Large Language Models (LLMs) from the Generative Pretrained Transformer (GPT) family have achieved outstanding performances in a wide range of text generation tasks. However, the enormous model sizes have hind... 详细信息
来源: 评论