咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 464 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是241-250 订阅
排序:
Learning Universe Model for Partial Matching Networks over Multiple Graphs
arXiv
收藏 引用
arXiv 2022年
作者: Jiang, Zetian Lu, Jiaxin Wang, Tianzhe Yan, Junchi Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China
We consider the general setting for partial matching of two or multiple graphs, in the sense that not necessarily all the nodes in one graph can find their correspondences in another graph and vice versa. We take a un... 详细信息
来源: 评论
Layer-wise Fast Adaptation for End-to-End Multi-Accent Speech Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Gong, Xun Lu, Yizhou Zhou, Zhikai Qian, Yanmin MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
Accent variability has posed a huge challenge to automatic speech recognition (ASR) modeling. Although one-hot accent vector based adaptation systems are commonly used, they require prior knowledge about the target ac... 详细信息
来源: 评论
Divide and Conquer: a Two-Step Method for High Quality Face De-identification with Model Explainability
Divide and Conquer: a Two-Step Method for High Quality Face ...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Yunqian Wen Bo Liu Jingyi Cao Rong Xie Li Song Institute of Image Communication and Network Engineering Shanghai Jiao Tong University School of Computer Science University of Technology Sydney MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Face de-identification involves concealing the true identity of a face while retaining other facial characteristics. Current target-generic methods typically disentangle identity features in the latent space, using ad...
来源: 评论
Self-Supervised Speaker Verification Using Dynamic Loss-Gate and label Correction
arXiv
收藏 引用
arXiv 2022年
作者: Han, Bing Chen, Zhengyang Qian, Yanmin MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
For self-supervised speaker verification, the quality of pseudo labels decides the upper bound of the system due to the massive unreliable labels. In this work, we propose dynamic loss-gate and label correction (DLG-L... 详细信息
来源: 评论
Knowledge Transfer and Distillation from Autoregressive to Non-Autoregressive Speech Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Gong, Xun Zhou, Zhikai Qian, Yanmin MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
Modern non-autoregressive (NAR) speech recognition systems aim to accelerate the inference speed;however, they suffer from performance degradation compared with autoregressive (AR) models as well as the huge model siz... 详细信息
来源: 评论
Collaborative Positional-Motion Excitation Module for Efficient Action Recognition  18th
Collaborative Positional-Motion Excitation Module for Effici...
收藏 引用
18th Pacific Rim International Conference on Artificial Intelligence, PRICai 2021
作者: Alsarhan, Tamam Lu, Hongtao Key Lab of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China MOE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Massive progress for vision-based action recognition has been made in the last few years, owing to the advancement of deep convolutional neural networks (CNNs). In contrast with 2D CNN-based approaches, 3D CNN-based a... 详细信息
来源: 评论
Spatial Gradient Guided Learning and Semantic Relation Transfer for Facial Landmark Detection  27th
Spatial Gradient Guided Learning and Semantic Relation Trans...
收藏 引用
27th International Conference on MultiMedia Modeling, MMM 2021
作者: Wang, Jian Li, Yaoyi Lu, Hongtao Key Lab of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Pixel-wise losses are widely used in heatmap regression networks to detect facial landmarks, however, those losses are not consistent with the evaluation criteria in testing, which is evaluating the error between the ... 详细信息
来源: 评论
UNSUPERVISED WORD-LEVEL PROSODY TAGGING FOR CONTROLlabLE SPEECH SYNTHESIS
arXiv
收藏 引用
arXiv 2022年
作者: Guo, Yiwei Du, Chenpeng Yu, Kai MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
Although word-level prosody modeling in neural text-to-speech (TTS) has been investigated in recent research for diverse speech synthesis, it is still challenging to control speech synthesis manually without a specifi... 详细信息
来源: 评论
AUDIO-TEXT RETRIEVAL IN CONTEXT
arXiv
收藏 引用
arXiv 2022年
作者: Lou, Siyu Xu, Xuenan Wu, Mengyue Yu, Kai MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
Audio-text retrieval based on natural language descriptions is a challenging task. It involves learning cross-modality alignments between long sequences under inadequate data conditions. In this work, we investigate s... 详细信息
来源: 评论
The SJTU X-LANCE lab System for CNSRC 2022
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Zhengyang Liu, Bei Han, Bing Zhang, Leying Qian, Yanmin MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
This technical report describes the SJTU X-LANCE lab system for the three tracks in CNSRC 2022. In this challenge, we explored the speaker embedding modeling ability of deep ResNet (Deeper r-vector). All the systems a...
来源: 评论