咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 464 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是251-260 订阅
排序:
Multi-level Gate Feature Aggregation with Spatially Adaptive Batch-Instance Normalization for Semantic Image Synthesis  27th
Multi-level Gate Feature Aggregation with Spatially Adaptive...
收藏 引用
27th International Conference on MultiMedia Modeling, MMM 2021
作者: Long, Jia Lu, Hongtao Key Lab of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
In this paper, we focus on the task of generating realistic images given an input semantic layout, which is also called semantic image synthesis. Most of previous methods are based on conditional generative adversaria... 详细信息
来源: 评论
The SJTU System for Short-duration Speaker Verification Challenge 2021
arXiv
收藏 引用
arXiv 2022年
作者: Han, Bing Chen, Zhengyang Zhou, Zhikai Qian, Yanmin MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
This paper presents the SJTU system for both text-dep.ndent and text-indep.ndent tasks in short-duration speaker verification (SdSV) challenge 2021. In this challenge, we explored different strong embedding extractors... 详细信息
来源: 评论
VQTTS: High-Fidelity Text-to-Speech Synthesis with Self-Supervised VQ Acoustic Feature
arXiv
收藏 引用
arXiv 2022年
作者: Du, Chenpeng Guo, Yiwei Chen, Xie Yu, Kai MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
The mainstream neural text-to-speech(TTS) pipeline is a cascade system, including an acoustic model(AM) that predicts acoustic feature from the input transcript and a vocoder that generates waveform according to the g... 详细信息
来源: 评论
Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Language Models
arXiv
收藏 引用
arXiv 2023年
作者: Yao, Yao Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China National Engineering Research Center for Multimedia Software School of Computer Science Wuhan University Wuhan430072 China
With the widespread use of language models (LMs) in NLP tasks, researchers have discovered the potential of Chain-of-thought (CoT) to assist LMs in accomplishing complex reasoning tasks by generating intermediate step... 详细信息
来源: 评论
EMODIFF: INTENSITY CONTROLlabLE EMOTIONAL TEXT-TO-SPEECH WITH SOFT-labEL GUIDANCE
arXiv
收藏 引用
arXiv 2022年
作者: Guo, Yiwei Du, Chenpeng Chen, Xie Yu, Kai MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
Although current neural text-to-speech (TTS) models are able to generate high-quality speech, intensity controllable emotional TTS is still a challenging task. Most existing methods need external optimizations for int... 详细信息
来源: 评论
Inductive Dummy-based Homogeneous Neighborhood Augmentation for Graph Collaborative Filtering
Inductive Dummy-based Homogeneous Neighborhood Augmentation ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Wei Ding Jiawei Sun Jie Li Chentao Wu Department of Computer Science and Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China Yancheng Blockchain Research Institute China
In the era of information explosion, we urgently need recommendation systems to filter massive amounts of information. Recent advancements in graph neural networks have led to the widespread adoption of graph collabor...
来源: 评论
SG-GS: Topology-aware Human Avatars with Semantically-guided Gaussian Splatting
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Haoyu Yang, Chen Wang, Hao Zhao, Xingyue Shen, Wei MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China School of Computer Science Wuhan University China Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology China School of Software Engineering Xi’an Jiao Tong University China
Reconstructing photo-realistic and topology-aware animatable human avatars from monocular videos remains challenging in computer vision and graphics. Recently, methods using 3D Gaussians to represent the human body ha... 详细信息
来源: 评论
Guided Patch-Grouping Wavelet Transformer with Spatial Congruence for Ultra-High Resolution Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Ji, Deyi Zhao, Feng Lu, Hongtao University of Science and Technology of China China Alibaba Group China Department of Computer Science and Engineering Shanghai Jiao Tong University China MOE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Most existing ultra-high resolution (UHR) segmentation methods always struggle in the dilemma of balancing memory cost and local characterization accuracy, which are both taken into account in our proposed Guided Patc... 详细信息
来源: 评论
Ultra-High Resolution Segmentation with Ultra-Rich Context: A Novel Benchmark
arXiv
收藏 引用
arXiv 2023年
作者: Ji, Deyi Zhao, Feng Lu, Hongtao Tao, Mingyuan Ye, Jieping University of Science and Technology of China China Alibaba Group China Department of Computer Science and Engineering Shanghai Jiao Tong University China MOE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
With the increasing interest and rapid development of methods for Ultra-High Resolution (UHR) segmentation, a large-scale benchmark covering a wide range of scenes with full fine-grained dense annotations is urgently ... 详细信息
来源: 评论
ADAPTIVE INCENTIVE FOR CROSS-SILO FEDERATED LEARNING: A MULTI-AGENT REINFORCEMENT LEARNING APPROACH
arXiv
收藏 引用
arXiv 2023年
作者: Yuan, Shijing Liu, Hongze Lv, Hongtao Feng, Zhanbo Li, Jie Chen, Hongyang Wu, Chentao Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China School of Software Shandong University Jinan China Research Center for Graph Computing Zhejiang Lab China
Cross-silo federated learning (FL) is a typical FL that enables organizations (e.g., financial or medical entities) to train global models on isolated data. Reasonable incentive is key to encouraging organizations to ... 详细信息
来源: 评论