咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 464 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是431-440 订阅
排序:
Korean-to-Chinese machine translation using Chinese character as pivot clue  33
Korean-to-Chinese machine translation using Chinese characte...
收藏 引用
33rd Pacific Asia Conference on Language, Information and Computation, PACLIC 2019
作者: Park, Jeonghyeok Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Korean-Chinese is a low resource language pair, but Korean and Chinese have a lot in common in terms of vocabulary. Sino- Korean words, which can be converted into corresponding Chinese characters, account for more th... 详细信息
来源: 评论
Learning better universal representations from pre-trained contextualized language models
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yian Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Pre-trained contextualized language models such as BERT (Devlin et al., 2019) have shown great effectiveness in a wide range of downstream natural language processing (NLP) tasks. However, the effective representation... 详细信息
来源: 评论
DATA AUGMENTATION FOR END-TO-END CODE-SWITCHING SPEECH RECOGNITION
arXiv
收藏 引用
arXiv 2020年
作者: Du, Chenpeng Li, Hao Lu, Yizhou Wang, Lan Qian, Yanmin MoE Key Lab of Artificial Intelligence SpeechLab Department of Computer Science and Engineering AI Institute Shanghai Jiao Tong University Shanghai China CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology China
Training a code-switching end-to-end automatic speech recognition (ASR) model normally requires a large amount of data, while code-switching data is often limited. In this paper, three novel approaches are proposed fo... 详细信息
来源: 评论
Adaptive convolution for semantic role labeling
arXiv
收藏 引用
arXiv 2020年
作者: Munir, Kashif Zhao, Hai Li, Zuchao Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Semantic role labeling (SRL) aims at elaborating the meaning of a sentence by forming a predicate-argument structure. Recent researches dep.cted that the effective use of syntax can improve SRL performance. However, s... 详细信息
来源: 评论
BURT: BERT-inspired universal representation from learning meaningful segment
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yian Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Although pre-trained contextualized language models such as BERT achieve significant performance on various downstream tasks, current language representation focuses on linguistic objective at a specific granularity. ... 详细信息
来源: 评论
SG-Net: Syntax guided transformer for language representation
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Zhuosheng Wu, Yuwei Zhou, Junru Duan, Sufeng Zhao, Hai Wang, Rui Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Understanding human language is one of the key themes of artificial intelligence. For language representation, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy texts an... 详细信息
来源: 评论
Reference Knowledgeable Network for Machine Reading Comprehension
arXiv
收藏 引用
arXiv 2020年
作者: Zhao, Yilin Zhang, Zhuosheng Zhao, Hai The Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Multi-choice Machine Reading Comprehension (MRC) as a challenge requires models to select the most appropriate answer from a set of candidates with a given passage and question. Most of the existing researches focus o... 详细信息
来源: 评论
Dialogue graph modeling for conversational machine reading
arXiv
收藏 引用
arXiv 2020年
作者: Ouyang, Siru Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Conversational Machine Reading (CMR) aims at answering questions in complicated interactive scenarios. Machine needs to answer questions through interactions with users based on given rule document, user scenario and ... 详细信息
来源: 评论
Topic-aware multi-turn dialogue modeling
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Yi Zhao, Hai Zhang, Zhuosheng Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
In the retrieval-based multi-turn dialogue modeling, it remains a challenge to select the most appropriate response according to extracting salient features in context utterances. As a conversation goes on, topic shif... 详细信息
来源: 评论
Bipartite Flat-Graph Network for Nested Named Entity Recognition
arXiv
收藏 引用
arXiv 2020年
作者: Luo, Ying Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
In this paper, we propose a novel bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER), which contains two subgraph modules: a flat NER module for outermost entities and a graph module for a... 详细信息
来源: 评论