咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 465 篇 英文
  • 44 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是441-450 订阅
排序:
Bipartite Flat-Graph Network for Nested Named Entity Recognition
arXiv
收藏 引用
arXiv 2020年
作者: Luo, Ying Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
In this paper, we propose a novel bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER), which contains two subgraph modules: a flat NER module for outermost entities and a graph module for a... 详细信息
来源: 评论
Learning universal representations from word to sentence
arXiv
收藏 引用
arXiv 2020年
作者: Li, Yian Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
Despite the well-developed cut-edge representation learning for language, most language representation models usually focus on specific level of linguistic unit, which cause great inconvenience when being confronted w... 详细信息
来源: 评论
Multi-choice Dialogue-Based Reading Comprehension with Knowledge and key Turns
arXiv
收藏 引用
arXiv 2020年
作者: Li, Junlong Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Multi-choice machine reading comprehension (MRC) requires models to choose the correct answer from candidate options given a passage and a question. Our research focuses dialogue-based MRC, where the passages are mult... 详细信息
来源: 评论
Semantics-Aware Inferential Network for Natural Language Understanding
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Shuailiang Zhao, Hai Zhou, Junru Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
For natural language understanding tasks, either machine reading comprehension or natural language inference, both semantics-aware and inference are favorable features of the concerned modeling for better understandin... 详细信息
来源: 评论
Accurate word representations with universal visual guidance
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Zhuosheng Yu, Haojie Zhao, Hai Wang, Rui Utiyama, Masao Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Word representation is a fundamental component in neural language understanding models. Recently, pre-trained language models (PrLMs) offer a new performant method of contextualized word representations by leveraging ... 详细信息
来源: 评论
Document-level neural machine translation with document embeddings
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Shu Zhao, Hai Li, Zuchao Lu, Bao-Liang Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Standard neural machine translation (NMT) is on the assumption of document-level context indep.ndent. Most existing document-level NMT methods are satisfied with a smattering sense of brief document-level information,... 详细信息
来源: 评论
Enhancing Pre-trained Language Model with Lexical Simplification
arXiv
收藏 引用
arXiv 2020年
作者: Bao, Rongzhou Wang, Jiayi Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
For both human readers and pre-trained language models (PrLMs), lexical diversity may lead to confusion and inaccuracy when understanding the underlying semantic meanings of given sentences. By substituting complex wo... 详细信息
来源: 评论
Deep feature guided image retargeting  34
Deep feature guided image retargeting
收藏 引用
34th IEEE International Conference on Visual Communications and Image Processing, VCIP 2019
作者: Wu, Jinan Xie, Rong Song, Li Liu, Bo Shanghai Jiao Tong University Institute of Image Communication and Network Engineering China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China University of Technology School of Computer Science Sydney Australia
Image retargeting is the technique to display images via devices with various aspect ratios and sizes. Traditional content-Aware retargeting methods rely on low-level features to predict pixel-wise importance and can ... 详细信息
来源: 评论
Graph-to-sequence neural machine translation
arXiv
收藏 引用
arXiv 2020年
作者: Duan, Sufeng Zhao, Hai Wang, Rui Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China Kyoto Japan
Neural machine translation (NMT) usually works in a seq2seq learning way by viewing either source or target sentence as a linear sequence of words, which can be regarded as a special case of graph, taking words in the... 详细信息
来源: 评论
Capsule-Transformer for Neural Machine Translation
arXiv
收藏 引用
arXiv 2020年
作者: Duan, Sufeng Cao, Juncheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Transformer hugely benefits from its key design of the multi-head self-attention network (SAN), which extracts information from various perspectives through transforming the given input into different subspaces. Howev... 详细信息
来源: 评论