咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 464 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是461-470 订阅
排序:
Unsupervised Person Re-Identification with Iterative Self-Supervised Domain Adaptation
Unsupervised Person Re-Identification with Iterative Self-Su...
收藏 引用
IEEE/CVF Conference on computer Vision and Pattern Recognition Workshops
作者: Haotian Tang Yiru Zhao Hongtao Lu Key Lab of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
In real applications, person re-identification (re-id) is an inherently domain adaptive computer vision task which often requires the model trained on a group of people to perform well on an unlabeled dataset consisti... 详细信息
来源: 评论
Neural graph matching network: Learning Lawler's quadratic assignment problem with extension to hypergraph and multiple-graph matching
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Runzhong Yan, Junchi Yang, Xiaokang Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China
Graph matching involves combinatorial optimization based on edge-to-edge affinity matrix, which can be generally formulated as Lawler's Quadratic Assignment Problem (QAP). This paper presents a QAP network directl... 详细信息
来源: 评论
Retrospective Reader for Machine Reading Comprehension
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Zhuosheng Yang, Junjie Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China SJTU-ParisTech Elite Institute of Technology Shanghai Jiao Tong University Shanghai China
Machine reading comprehension (MRC) is an ai challenge that requires machine to determine the correct answers to questions based on a given passage. MRC systems must not only answer question when necessary but also di... 详细信息
来源: 评论
Learning combinatorial embedding networks for deep graph matching
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Runzhong Yan, Junchi Yang, Xiaokang Department of Computer Science and Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence Ai Institute Shanghai Jiao Tong University
Graph matching refers to finding node correspondence between graphs, such that the corresponding node and edge's affinity can be maximized. In addition with its NP-completeness nature, another important challenge ... 详细信息
来源: 评论
Learning Combinatorial Embedding Networks for Deep Graph Matching
Learning Combinatorial Embedding Networks for Deep Graph Mat...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Runzhong Wang Junchi Yan Xiaokang Yang Department of Computer Science and Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Graph matching refers to finding node correspondence between graphs, such that the corresponding node and edge's affinity can be maximized. In addition with its NP-completeness nature, another important challenge ... 详细信息
来源: 评论
Explicit Shape Encoding for Real-Time Instance Segmentation
Explicit Shape Encoding for Real-Time Instance Segmentation
收藏 引用
International Conference on computer Vision (ICCV)
作者: Wenqiang Xu Haiyang Wang Fubo Qi Cewu Lu Department of Computer Science and Engineering Shanghai Jiao Tong University member of MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University and SJTU-SenseTime AI lab.
In this paper, we propose a novel top-down instance segmentation framework based on explicit shape encoding, named \textbf{ESE-Seg}. It largely reduces the computational consumption of the instance segmentation by exp... 详细信息
来源: 评论
Impact of indirect transitions on valley polarization in WS2 and WSe2
arXiv
收藏 引用
arXiv 2020年
作者: Godiksen, Rasmus H. Wang, Shaojun Raziman, T.V. Rivas, Jaime Gómez Curto, Alberto G. Dep. Applied Physics Institute for Photonic Integration Eindhoven University of Technology Eindhoven Netherlands MOE Key Lab. of Modern Optical Technologies Jiangsu Key Lab. of Advanced Optical Manufacturing Technologies School of Optoelectronic Science and Engineering Soochow University Suzhou215006 China Photonics Research Group Ghent University-imec Ghent Belgium Center for Nano- and Biophotonics Ghent University Ghent Belgium
Controlling the momentum of carriers in semiconductors, known as valley polarization, is a new resource for optoelectronics and information technologies. Materials exhibiting high polarization are needed for valley-ba... 详细信息
来源: 评论
Concurrent parsing of constituency and dep.ndency
arXiv
收藏 引用
arXiv 2019年
作者: Zhou, Junru Zhang, Shuailiang Zhao, Hai Department of Computer Science and Engineering Key Lab of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Constituent and dep.ndency representation for syntactic structure share a lot of linguistic and computational characteristics, this paper thus makes the first attempt by introducing a new model that is capable of pars... 详细信息
来源: 评论
Multi-span style extraction for generative reading comprehension
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Junjie Zhang, Zhuosheng Zhao, Hai SJTU-ParisTech Elite Institute of Technology Shanghai Jiao Tong University Shanghai China Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Generative machine reading comprehension (MRC) requires a model to generate well-formed answers. For this type of MRC, answer generation method is crucial to the model performance. However, generative models, which ar... 详细信息
来源: 评论
Margin matters: Towards more discriminative deep neural network embeddings for speaker recognition
arXiv
收藏 引用
arXiv 2019年
作者: Xiang, Xu Wang, Shuai Huang, Houjun Qian, Yanmin Yu, Kai MoE Key Lab of Artificial Intelligence SpeechLab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai AI Speech Co. Ltd
Recently, speaker embeddings extracted from a speaker discriminative deep neural network (DNN) yield better performance than the conventional methods such as i-vector. In most cases, the DNN speaker classifier is trai... 详细信息
来源: 评论