咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 464 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是481-490 订阅
排序:
Parsing all: Syntax and semantics, dep.ndencies and spans
arXiv
收藏 引用
arXiv 2019年
作者: Zhou, Junru Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence Ai Institute Shanghai Jiao Tong University
Both syntactic and semantic structures are key linguistic contextual clues, in which parsing the latter has been well shown beneficial from parsing the former. However, few works ever made an attempt to let semantic p... 详细信息
来源: 评论
Syntax-aware multilingual semantic role labeling
arXiv
收藏 引用
arXiv 2019年
作者: He, Shexia Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence Ai Institute Shanghai Jiao Tong University
Recently, semantic role labeling (SRL) has earned a series of success with even higher performance improvements, which can be mainly attributed to syntactic integration and enhanced word representation. However, most ... 详细信息
来源: 评论
Global greedy dep.ndency parsing
arXiv
收藏 引用
arXiv 2019年
作者: Li, Zuchao Zhao, Hai Parnow, Kevin Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence Ai Institute Shanghai Jiao Tong University
Most syntactic dep.ndency parsing models may fall into one of two categories: transition- and graph-based models. The former models enjoy high inference efficiency with linear time complexity, but they rely on the sta... 详细信息
来源: 评论
Korean-to-Chinese Machine Translation using Chinese Character as Pivot Clue
arXiv
收藏 引用
arXiv 2019年
作者: Park, Jeonghyeok Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Korean-Chinese is a low resource language pair, but Korean and Chinese have a lot in common in terms of vocabulary. Sino-Korean words, which can be converted into corresponding Chinese characters, account for more the... 详细信息
来源: 评论
Modeling named entity embedding distribution into hypersphere
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Tang, Bingjie Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China Computer Science Department Brown University RI United States
This work models named entity distribution from a way of visualizing topological structure of embedding space, so that we make an assumption that most, if not all, named entities (NEs) for a language tend to aggregate... 详细信息
来源: 评论
LIMIT-BERT : Linguistic informed multi-task BERT
arXiv
收藏 引用
arXiv 2019年
作者: Zhou, Junru Zhang, Zhuosheng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
In this paper, we present a Linguistic Informed Multi-Task BERT (LIMIT-BERT) for learning language representations across multiple linguistic tasks by Multi-Task Learning (MTL). LIMIT-BERT includes five key linguistic... 详细信息
来源: 评论
Span model for open information extraction on accurate corpus
arXiv
收藏 引用
arXiv 2019年
作者: Zhan, Junlang Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Open Information Extraction (Open IE) is a challenging task especially due to its brittle data basis. Most of Open IE systems have to be trained on automatically built corpus and evaluated on inaccurate test set. In t... 详细信息
来源: 评论
Attention Is All You Need for Chinese Word Segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Duan, Sufeng Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
This paper presents a fast and accurate Chinese word segmentation (CWS) model with only unigram feature and greedy decoding algorithm. Our model uses only attention mechanism for network block building. In detail, we ... 详细信息
来源: 评论
Named entity recognition only from word embeddings
arXiv
收藏 引用
arXiv 2019年
作者: Luo, Ying Zhao, Hai Zhan, Junlang Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence Ai Institute Shanghai Jiao Tong University Shanghai China
Deep neural network models have helped named entity (NE) recognition achieve amaz-ing performance without handcrafting features. However, existing systems require large amounts of human annotated training data. Ef-for... 详细信息
来源: 评论
Controllable dual skew divergence loss for neural machine translation
arXiv
收藏 引用
arXiv 2019年
作者: Li, Zuchao Zhao, Hai Wu, Yingting Xiao, Fengshun Jiang, Shu Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
In sequence prediction tasks like neural machine translation, training with cross-entropy loss often leads to models that overgeneralize and plunge into local optima. In this paper, we propose an extended loss functio... 详细信息
来源: 评论