咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 465 篇 英文
  • 44 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是491-500 订阅
排序:
Probing contextualized sentence representations with visual awareness
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Wang, Rui Chen, Kehai Utiyama, Masao Sumita, Eiichiro Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
We present a universal framework to model contextualized sentence representations with visual awareness that is motivated to overcome the shortcomings of the multimodal parallel data with manual annotations. For each ... 详细信息
来源: 评论
Hierarchical contextualized representation for named entity recognition
arXiv
收藏 引用
arXiv 2019年
作者: Luo, Ying Xiao, Fengshun Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Named entity recognition (NER) models are typically based on the architecture of Bi-directional LSTM (BiLSTM). The constraints of sequential nature and the modeling of single input prevent the full utilization of glob... 详细信息
来源: 评论
A Smart Sliding Chinese Pinyin Input Method Editor on Touchscreen
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Meng, Zhen Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
This paper presents a smart sliding Chinese pinyin Input Method Editor (IME) for touchscreen devices which allows user finger sliding from one key to another on the touchscreen instead of tapping keys one by one, whil... 详细信息
来源: 评论
Memorizing all for implicit discourse relation recognition
arXiv
收藏 引用
arXiv 2019年
作者: Bai, Hongxiao Zhao, Hai Zhao, Junhan Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence Ai Institute Shanghai Jiao Tong University Computer Graphics Technology Purdue University West LafayetteIN United States
Implicit discourse relation recognition is a challenging task due to the absence of the nec-essary informative clue from explicit connec-tives. The prediction of relations requires a deep understanding of the semantic... 详细信息
来源: 评论
SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects
SCRDet: Towards More Robust Detection for Small, Cluttered a...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Xue Yang Jirui Yang Junchi Yan Yue Zhang Tengfei Zhang Zhi Guo Xian Sun Kun Fu NIST Institute of Electronics Beijing (Suzhou) China University of Chinese Academy of Sciences Beijing China Department of Computer Science and Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Object detection has been a building block in computer vision. Though considerable progress has been made, there still exist challenges for objects with small size, arbitrary direction, and dense distribution. Apart f... 详细信息
来源: 评论
Dual co-matching network for multi-choice reading comprehension
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shuailiang Zhao, Hai Wu, Yuwei Zhang, Zhuosheng Zhou, Xi Zhou, Xiang Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China CloudWalk Technology Shanghai China
Multi-choice reading comprehension is a challenging task to select an answer from a set of candidates when given passage and question. This work proposes dual co-matching network which models the relationship among pa... 详细信息
来源: 评论
DCMN+: Dual Co-matching network for multi-choice reading comprehension
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shuailiang Zhao, Hai Wu, Yuwei Zhang, Zhuosheng Zhou, Xi Zhou, Xiang Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China CloudWalk Technology Shanghai China
Multi-choice reading comprehension is a challenging task to select an answer from a set of candidate options when given passage and question. Previous approaches usually only calculate question-aware passage represent...
来源: 评论
SG-Net: Syntax-guided machine reading comprehension
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Wu, Yuwei Zhou, Junru Duan, Sufeng Zhao, Hai Wang, Rui Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China College of Zhiyuan Shanghai Jiao Tong University China Kyoto Japan
For machine reading comprehension, the capacity of effectively modeling the linguistic knowledge from the detail-riddled and lengthy passages and getting ride of the noises is essential to improve its performance. Tra... 详细信息
来源: 评论
Semantics-aware BERT for language understanding
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Wu, Yuwei Zhao, Hai Li, Zuchao Zhang, Shuailiang Zhou, Xi Zhou, Xiang Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China College of Zhiyuan Shanghai Jiao Tong University China CloudWalk Technology Shanghai China
The latest work on language representations carefully integrates contextualized features into language model training, which enables a series of success especially in various machine reading comprehension and natural ... 详细信息
来源: 评论
Bridging explicit and implicit deep generative models via neural Stein estimators
arXiv
收藏 引用
arXiv 2019年
作者: Wu, Qitian Gao, Rui Zha, Hongyuan Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University University of Texas Austin United States School of Data Science Shenzhen Institute of Artificial Intelligence and Robotics for Society The Chinese University of Hong Kong Shenzhen Hong Kong The Chinese University of Hong Kong Shenzhen China
There are two types of deep generative models: explicit and implicit. The former defines an explicit density form that allows likelihood inference;while the latter targets a flexible transformation from random noise t...
来源: 评论