咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 221 篇 会议

馆藏范围

  • 509 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 263 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 67 篇 信息与通信工程
    • 47 篇 生物工程
    • 31 篇 控制科学与工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 电气工程
    • 21 篇 化学工程与技术
    • 17 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 9 篇 机械工程
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 5 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
  • 211 篇 理学
    • 115 篇 物理学
    • 67 篇 数学
    • 57 篇 生物学
    • 20 篇 化学
    • 18 篇 统计学(可授理学、...
    • 6 篇 系统科学
    • 4 篇 地质学
  • 65 篇 管理学
    • 45 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 临床医学
    • 10 篇 药学(可授医学、理...
  • 12 篇 法学
    • 12 篇 社会学
  • 2 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 28 篇 speech recogniti...
  • 26 篇 semantics
  • 23 篇 training
  • 18 篇 signal processin...
  • 14 篇 speech enhanceme...
  • 12 篇 acoustics
  • 12 篇 machine learning
  • 12 篇 embeddings
  • 11 篇 computational li...
  • 11 篇 adaptation model...
  • 10 篇 computational mo...
  • 10 篇 syntactics
  • 10 篇 neural machine t...
  • 9 篇 speech processin...
  • 9 篇 feature extracti...
  • 9 篇 degradation
  • 9 篇 robustness
  • 8 篇 self-supervised ...
  • 8 篇 decoding
  • 7 篇 object detection

机构

  • 153 篇 moe key lab of a...
  • 131 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 32 篇 department of co...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 16 篇 key lab. of shan...
  • 16 篇 research center ...
  • 15 篇 aispeech co. ltd...
  • 15 篇 ji hua laborator...
  • 15 篇 shanghai jiao to...
  • 10 篇 shanghai jiao to...
  • 10 篇 auditory cogniti...
  • 9 篇 kyoto
  • 8 篇 department of co...
  • 8 篇 aispeech ltd
  • 8 篇 microsoft resear...

作者

  • 106 篇 yu kai
  • 93 篇 zhao hai
  • 61 篇 chen lu
  • 56 篇 qian yanmin
  • 40 篇 zhang zhuosheng
  • 39 篇 yan junchi
  • 38 篇 yanmin qian
  • 36 篇 chen xie
  • 32 篇 li zuchao
  • 28 篇 wu mengyue
  • 23 篇 zhu su
  • 22 篇 guo yiwei
  • 20 篇 kai yu
  • 19 篇 yang xiaokang
  • 18 篇 chen zhengyang
  • 17 篇 xu hongshen
  • 17 篇 du chenpeng
  • 17 篇 junchi yan
  • 16 篇 cao ruisheng
  • 16 篇 ma ziyang

语言

  • 464 篇 英文
  • 45 篇 其他
  • 1 篇 中文
检索条件"机构=Dep. of Computer Science and Engineering & MoE Key Lab of AI"
509 条 记 录,以下是81-90 订阅
排序:
Advanced Zero-Shot Text-to-Speech for Background Removal and Preservation with Controllable Masked Speech Prediction
Advanced Zero-Shot Text-to-Speech for Background Removal and...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Leying Zhang Wangyou Zhang Zhengyang Chen Yanmin Qian AI Institute Department of Computer Science and Engineering Auditory Cognition and Computational Acoustics Lab MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University Shanghai China
The acoustic background plays a crucial role in natural conversation. It provides context and helps listeners understand the environment, but a strong background makes it difficult for listeners to understand spoken w... 详细信息
来源: 评论
Improving Speech Enhancement Using Audio Tagging Knowledge From Pre-Trained Representations and Multi-Task Learning
Improving Speech Enhancement Using Audio Tagging Knowledge F...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Lin, Shaoxiong Zhang, Chao Qian, Yanmin Tsinghua University Department of Electronic Engineering Beijing China Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence Ai Institute Department of Computer Science and Engineering Shanghai China Suzhou Institute of Artificial Intelligence Shanghai Jiao Tong University Suzhou215000 China
In deep-learning-based speech enhancement (SE), an audio-knowledge-ignorant approach is often used, which estimates a denoising model to transform the noisy input speech into clean output speech without understanding ... 详细信息
来源: 评论
Exploiting Persistent CPU Cache for Scalable Persistent Hash Index
Exploiting Persistent CPU Cache for Scalable Persistent Hash...
收藏 引用
International Conference on Data engineering
作者: Bowen Zhang Shengan Zheng Liangxu Nie Zhenlin Qi Linpeng Huang Hong Mei Department of Computer Science and Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Byte-addressable persistent memory (PM) has been widely studied in the past few years. Recently, the emerging eADR technology further incorporates CPU cache into the persistence domain. The persistent CPU cache is pro... 详细信息
来源: 评论
Decoupling Classification and Localization of CLIP
Decoupling Classification and Localization of CLIP
收藏 引用
IEEE International Conference on Multimedia and Expo Workshops (ICMEW)
作者: Muyang Yi Zhaozhi Xie Yuwen Yang Chang Liu Yue Ding Hongtao Lu Department of Computer Science and Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Contrastive language-image pre-training, known for its effectiveness in zero-shot retrieval and classification, faces limitations in localization ability, hindering its broader application in diverse vision tasks such... 详细信息
来源: 评论
Towards Practical Edge Inference Attacks Against Graph Neural Networks
Towards Practical Edge Inference Attacks Against Graph Neura...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Kailai Li Jiawei Sun Ruoxin Chen Wei Ding Kexue Yu Jie Li Chentao Wu Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Graph Neural Networks (GNNs) have demonstrated superior performance in numerous real-world applications. Despite their success, recent studies have shown that GNNs are vulnerable under edge inference attacks aimed to ... 详细信息
来源: 评论
Band-Wise Front-End Distortion Suppression for Robust Speech Recognition
Band-Wise Front-End Distortion Suppression for Robust Speech...
收藏 引用
International Symposium on Chinese Spoken Language Processing
作者: Siyi Zhao Wei Wang Yanmin Qian Department of Computer Science and Engineering Auditory Cognition and Computational Acoustic Lab MoE Key Lab of Aritificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai
Advancements in deep learning techniques have significantly improved automatic speech recognition (ASR). However, improving robustness to acoustic interferences, such as background noise and reverberation, remains cru... 详细信息
来源: 评论
Insights from Hyperparameter Scaling of Online Speech Separation
Insights from Hyperparameter Scaling of Online Speech Separa...
收藏 引用
International Symposium on Chinese Spoken Language Processing
作者: Xin Zhou Wangyou Zhang Chenda Li Yanmin Qian Department of Computer Science and Engineering Auditory Cognition and Computational Acoustics Lab MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai
With the rapid development of deep learning, a large number of models with excellent performance for speech separation tasks have emerged in the literature. Despite their impressive performance, these models usually c... 详细信息
来源: 评论
ConMamba: A Convolution-Augmented Mamba Encoder Model for Efficient End-to-End ASR Systems
ConMamba: A Convolution-Augmented Mamba Encoder Model for Ef...
收藏 引用
International Symposium on Chinese Spoken Language Processing
作者: Haoxiang Hou Xun Gong Yanmin Qian Department of Computer Science and Engineering Auditory Cognition and Computational Acoustics Lab MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai
End-to-End Automatic Speech Recognition (ASR) models, such as Conformer, excel in accuracy but face limitations in computational complexity and positional awareness, hindering their use in real-time or resource-constr... 详细信息
来源: 评论
label-Aware Auxiliary Learning for Dialogue State Tracking
Label-Aware Auxiliary Learning for Dialogue State Tracking
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yuncong Liu Lu Chen Kai Yu Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence X-LANCE Lab SJTU AI Institute Shanghai Jiao Tong University Shanghai China
Dialogue State Tracking (DST) is an essential part of task-oriented dialogue systems. Many existing methods try to utilize external dialogue datasets to improve the performance of DST models. Instead of previous metho...
来源: 评论
AdaEAGLE: Optimizing Speculative Decoding via Explicit Modeling of Adaptive Draft Structures
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Situo Wang, Hankun Ma, Da Zhu, Zichen Chen, Lu Lan, Kunyao Yu, Kai X-LANCE Lab Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence SJTU AI Institute Shanghai Jiao Tong University Shanghai China
Speculative Decoding (SD) is a popular lossless technique for accelerating the inference of Large Language Models (LLMs). We show that the decoding speed of SD frameworks with static draft structures can be significan... 详细信息
来源: 评论