With recent advances in technology protecting sensitive healthcare data is challenging. Particularly, one of the most serious issues with medical information security is protecting of medical content, such as the priv...
详细信息
With recent advances in technology protecting sensitive healthcare data is challenging. Particularly, one of the most serious issues with medical information security is protecting of medical content, such as the privacy of patients. As medical information becomes more widely available, security measures must be established to protect confidentiality, integrity, and availability. Image steganography was recently proposed as an extra data protection mechanism for medical records. This paper describes a data-hiding approach for DICOM medical pictures. To ensure secrecy, we use Adversarial Neural Cryptography with SHA-256 (ANC-SHA-256) to encrypt and conceal the RGB patient picture within the medical image's Region of Non-Interest (RONI). To ensure anonymity, we use ANC-SHA-256 to encrypt the RGB patient image before embedding. We employ a secure hash method with 256bit (SHA-256) to produce a digital signature from the information linked to the DICOM file to validate the authenticity and integrity of medical pictures. Many tests were conducted to assess visual quality using diverse medical datasets, including MRI, CT, X-ray, and ultrasound cover pictures. The LFW dataset was chosen as a patient hidden picture. The proposed method performs well in visual quality measures including the PSNR average of 67.55, the NCC average of 0.9959, the SSIM average of 0.9887, the UQI average of 0.9859, and the APE average of 3.83. It outperforms the most current techniques in these visual quality measures (PSNR, MSE, and SSIM) across six medical assessment categories. Furthermore, the proposed method offers great visual quality while being resilient to physical adjustments, histogram analysis, and other geometrical threats such as cropping, rotation, and scaling. Finally, it is particularly efficient in telemedicine applications with high achieving security with a ratio of 99% during remote transmission of Electronic Patient Records (EPR) over the Internet, which safeguards the patien
Crude oil prices (COP) profoundly influence global economic stability, with fluctuations reverberating across various sectors. Accurate forecasting of COP is indispensable for governments, policymakers, and stakeholde...
详细信息
Recently, deep learning neural networks have been widely used in object classification. The process of object classification typically involves extracting features from the point cloud using neural networks and integr...
详细信息
This study proposes a contactless and real-time hand gesture recognition system suitable for smartwatches. The proposed system adopts inductive proximity sensing to collect Mechanomyography (MMG) signals induced by fi...
详细信息
A novel cluster-based traffic offloading and user association (UA) algorithm alongside a multi-agent deep reinforcement learning (DRL) based base station (BS) activation mechanism is proposed in this paper. Our design...
详细信息
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in...
详细信息
The use of privacy-enhanced facial recognition has increased in response to growing concerns about data securityand privacy in the digital age. This trend is spurred by rising demand for face recognition technology in a varietyof industries, including access control, law enforcement, surveillance, and internet communication. However,the growing usage of face recognition technology has created serious concerns about data monitoring and userprivacy preferences, especially in context-aware systems. In response to these problems, this study provides a novelframework that integrates sophisticated approaches such as Generative Adversarial Networks (GANs), Blockchain,and distributed computing to solve privacy concerns while maintaining exact face recognition. The framework’spainstaking design and execution strive to strike a compromise between precise face recognition and protectingpersonal data integrity in an increasingly interconnected environment. Using cutting-edge tools like Dlib for faceanalysis,Ray Cluster for distributed computing, and Blockchain for decentralized identity verification, the proposedsystem provides scalable and secure facial analysis while protecting user privacy. The study’s contributions includethe creation of a sustainable and scalable solution for privacy-aware face recognition, the implementation of flexibleprivacy computing approaches based on Blockchain networks, and the demonstration of higher performanceover previous methods. Specifically, the proposed StyleGAN model has an outstanding accuracy rate of 93.84%while processing high-resolution images from the CelebA-HQ dataset, beating other evaluated models such asProgressive GAN 90.27%, CycleGAN 89.80%, and MGAN 80.80%. With improvements in accuracy, speed, andprivacy protection, the framework has great promise for practical use in a variety of fields that need face recognitiontechnology. This study paves the way for future research in privacy-enhanced face recognition systems, emphasizingt
For point cloud registration, the purpose of this article is to propose a novel centralized random sample consensus (RANSAC) (C-RANSAC) registration with fast convergence and high accuracy. In our algorithm, the novel...
详细信息
Ethiopia, known as the birthplace of coffee, relies on coffee exports as a major source of foreign currency. This research paper focuses on developing a hybrid feature mining technique to automatically classify Ethiop...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
暂无评论