Parkinson's disease (PD) diagnosis involves the assessment of a variety of motor and non-motor symptoms. To accurately diagnose PD, it is necessary to differentiate its symptoms from those of other conditions. Dur...
详细信息
Human emotions are the mind's responses to external stimuli, and due to their dynamic and unpredictable nature, research in this field has become increasingly important. There is a growing trend in utilizing deep ...
详细信息
In today’s rapidly evolving landscape of communication technologies,ensuring the secure delivery of sensitive data has become an essential *** overcome these difficulties,different steganography and data encryption m...
详细信息
In today’s rapidly evolving landscape of communication technologies,ensuring the secure delivery of sensitive data has become an essential *** overcome these difficulties,different steganography and data encryption methods have been proposed by researchers to secure *** of the proposed steganography techniques achieve higher embedding capacities without compromising visual imperceptibility using LSB *** this work,we have an approach that utilizes a combinationofMost SignificantBit(MSB)matching andLeast Significant Bit(LSB)*** proposed algorithm divides confidential messages into pairs of bits and connects them with the MSBs of individual pixels using pair matching,enabling the storage of 6 bits in one pixel by modifying a maximum of three *** proposed technique is evaluated using embedding capacity and Peak Signal-to-Noise Ratio(PSNR)score,we compared our work with the Zakariya scheme the results showed a significant increase in data concealment *** achieved results of ourwork showthat our algorithmdemonstrates an improvement in hiding capacity from11%to 22%for different data samples while maintaining a minimumPeak Signal-to-Noise Ratio(PSNR)of 37 *** findings highlight the effectiveness and trustworthiness of the proposed algorithm in securing the communication process and maintaining visual integrity.
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world ***...
详细信息
This research aims to propose a practical framework designed for the automatic analysis of a product’s comprehensive functionality and security vulnerabilities,generating applicable guidelines based on real-world *** existing analysis of software security vulnerabilities often focuses on specific features or *** partial and arbitrary analysis of the security vulnerabilities makes it challenging to comprehend the overall security vulnerabilities of the *** key novelty lies in overcoming the constraints of partial *** proposed framework utilizes data from various sources to create a comprehensive functionality profile,facilitating the derivation of real-world security *** guidelines are dynamically generated by associating functional security vulnerabilities with the latest Common Vulnerabilities and Exposure(CVE)and Common Vulnerability Scoring System(CVSS)scores,resulting in automated guidelines tailored to each *** guidelines are not only practical but also applicable in real-world software,allowing for prioritized security *** proposed framework is applied to virtual private network(VPN)software,wherein a validated Level 2 data flow diagram is generated using the Spoofing,Tampering,Repudiation,information Disclosure,Denial of Service,and Elevation of privilege(STRIDE)technique with references to various papers and examples from related *** analysis resulted in the identification of a total of 121 *** successful implementation and validation demonstrate the framework’s efficacy in generating customized guidelines for entire systems,subsystems,and selected modules.
Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation **...
详细信息
Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation *** this paper,we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble *** proposed ensemble model is composed of two levels of regression *** first level consists of three strong models namely,random forest,support vector regression,and light gradient boosting *** the second level is based on the ElasticNet regression model,which receives the prediction results from the models in the first level for refinement and producing the final optimal *** achieve the best performance of these regression models,the advanced squirrel search optimization algorithm(ASSOA)is utilized to search for the optimal set of hyper-parameters of each *** results show that the proposed two-level ensemble model could achieve a robust prediction of the bandwidth of metamaterial antenna when compared with the recently published ensemble models based on the same publicly available benchmark *** findings indicate that the proposed approach results in root mean square error(RMSE)of(0.013),mean absolute error(MAE)of(0.004),and mean bias error(MBE)of(0.0017).These results are superior to the other competing ensemble models and can predict the antenna bandwidth more accurately.
Traffic prediction of wireless networks attracted many researchersand practitioners during the past decades. However, wireless traffic frequentlyexhibits strong nonlinearities and complicated patterns, which makes it ...
详细信息
Traffic prediction of wireless networks attracted many researchersand practitioners during the past decades. However, wireless traffic frequentlyexhibits strong nonlinearities and complicated patterns, which makes it challengingto be predicted accurately. Many of the existing approaches forpredicting wireless network traffic are unable to produce accurate predictionsbecause they lack the ability to describe the dynamic spatial-temporalcorrelations of wireless network traffic data. In this paper, we proposed anovel meta-heuristic optimization approach based on fitness grey wolf anddipper throated optimization algorithms for boosting the prediction accuracyof traffic volume. The proposed algorithm is employed to optimize the hyperparametersof long short-term memory (LSTM) network as an efficient timeseries modeling approach which is widely used in sequence prediction *** prove the superiority of the proposed algorithm, four other optimizationalgorithms were employed to optimize LSTM, and the results were *** evaluation results confirmed the effectiveness of the proposed approachin predicting the traffic of wireless networks accurately. On the other hand,a statistical analysis is performed to emphasize the stability of the proposedapproach.
Arabic dialects are commonly used on social media platforms by Arabic speakers to express their opinions and connect with each other. However, due to the lack of standardized rules or grammars, analyzing Arabic dialec...
详细信息
Diabetes is a serious health condition that can cause several issues in human body organs such as the heart and kidney as well as a serious eye disease called diabetic retinopathy(DR).Early detection and treatment are...
详细信息
Diabetes is a serious health condition that can cause several issues in human body organs such as the heart and kidney as well as a serious eye disease called diabetic retinopathy(DR).Early detection and treatment are crucial to prevent complete blindness or partial vision *** detection methods,which involve ophthalmologists examining retinal fundus images,are subjective,expensive,and ***,this study employs artificial intelligence(AI)technology to perform faster and more accurate binary classifications and determine the presence of *** this regard,we employed three promising machine learning models namely,support vector machine(SVM),k-nearest neighbors(KNN),and Histogram Gradient Boosting(HGB),after carefully selecting features using transfer learning on the fundus images of the Asia Pacific Tele-Ophthalmology Society(APTOS)(a standard dataset),which includes 3662 images and originally categorized DR into five levels,now simplified to a binary format:No DR and DR(Classes 1-4).The results demonstrate that the SVM model outperformed the other approaches in the literature with the same dataset,achieving an excellent accuracy of 96.9%,compared to 95.6%for both the KNN and HGB *** approach is evaluated by medical health professionals and offers a valuable pathway for the early detection of DR and can be successfully employed as a clinical decision support system.
Ensuring color accuracy is essential when processing underwater images of coral reefs. These images often suffer from color distortion and blurring due to absorption and scattering. Current trends in underwater color ...
详细信息
In this work, VoteDroid a novel fine-tuned deep learning models-based ensemble voting classifier has been proposed for detecting malicious behavior in Android applications. To this end, we proposed adopting the random...
详细信息
暂无评论