Robot calligraphy visually reflects the motion capability of robotic *** traditional researches mainly focus on image generation and the writing of simple calligraphic strokes or characters,this article presents a gen...
详细信息
Robot calligraphy visually reflects the motion capability of robotic *** traditional researches mainly focus on image generation and the writing of simple calligraphic strokes or characters,this article presents a generative adversarial network(GAN)-based motion learning method for robotic calligraphy synthesis(Gan2CS)that can enhance the efficiency in writing complex calligraphy words and reproducing classic calligraphy *** key technologies in the proposed approach include:(1)adopting the GAN to learn the motion parameters from the robot writing operation;(2)converting the learnt motion data into the style font and realising the transition from static calligraphy images to dynamic writing demonstration;(3)reproducing high-precision calligraphy works by synthesising the writing motion data *** this study,the motion trajectories of sample calligraphy images are firstly extracted and converted into the robot *** robot performs the writing with motion planning,and the writing motion parameters of calligraphy strokes are learnt with *** the motion data of basic strokes is synthesised based on the hierarchical process of‘stroke-radicalpart-character’.And the robot re-writes the synthesised characters whose similarity with the original calligraphy characters is *** calligraphy characters have been tested in the experiments for method validation and the results validated that the robot can actualise the robotic calligraphy synthesis of writing motion data with GAN.
The paper addresses the critical problem of application workflow offloading in a fog environment. Resource constrained mobile and Internet of Things devices may not possess specialized hardware to run complex workflow...
详细信息
With advancements in technology, the study of data hiding (DH) in images has become more and more important. In this paper, we introduce a novel data hiding scheme that employs a voting strategy to predict pixels base...
详细信息
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designe...
详细信息
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designed with security because they are resource constrained ***,having an accurate IoT security system to detect security attacks is *** Detection Systems(IDSs)using machine learning and deep learning techniques can detect security attacks *** paper develops an IDS architecture based on Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)deep learning *** implement our model on the UNSW-NB15 dataset which is a new network intrusion dataset that cate-gorizes the network traffic into normal and attacks *** this work,interpolation data preprocessing is used to compute the missing ***,the imbalanced data problem is solved using a synthetic data generation *** experiments have been implemented to compare the performance results of the proposed model(CNN+LSTM)with a basic model(CNN only)using both balanced and imbalanced ***,with some state-of-the-art machine learning classifiers(Decision Tree(DT)and Random Forest(RF))using both balanced and imbalanced *** results proved the impact of the balancing *** proposed hybrid model with the balance technique can classify the traffic into normal class and attack class with reasonable accuracy(92.10%)compared with the basic CNN model(89.90%)and the machine learning(DT 88.57%and RF 90.85%)***,comparing the proposed model results with the most related works shows that the proposed model gives good results compared with the related works that used the balance techniques.
If adversaries were to obtain quantum computers in the future, their massive computing power would likely break existing security schemes. Since security is a continuous process, more substantial security schemes must...
详细信息
Rice fields all across the world are affected by spikelet sterility, often known as rice spikelet's disease. It is characterized by the improper development of spikelet’s, which lowers grain output and quality. F...
详细信息
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy ...
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy *** learning(FL) enhances RS's privacy by enabling model training on decentralized data [2]. Although integrating KG and FL can address both data sparsity and privacy issues in RSs [3], several challenges persist. CH1,Each client's local model relies on a consistent global model from the server, limiting personalized deployment to endusers.
Utilizing interpolation techniques (IT) within reversible data hiding (RDH) algorithms presents the advantage of a substantial embedding capacity. Nevertheless, prevalent algorithms often straightforwardly embed confi...
详细信息
Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research *** physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural netw...
详细信息
Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research *** physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural networks,demonstrate proficiency in modeling ideal physical systems,but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws *** this paper,we present a novel augmented deep Lagrangian network,which seamlessly integrates a deep Lagrangian network with a standard deep *** fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian *** proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under *** experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility.
Over recent years, virtualization has worked as the powerhouse of the data centers. To positively influence datacenter utilization, power consumption, and management, live migration presents a technique which must be ...
详细信息
暂无评论