For Egypt, ethane is a vital chemical precursor, with the potential to significantly attract financial resources and drive economic growth. Enhancing its added value necessitates efficient recovery of ethane before it...
详细信息
In this paper, we consider multi-view video and audio streaming using MPEG-DASH, which enables to transmit video tailored to the network conditions over HTTP communication. This paper uses HTTP/2 instead of HTTP/1.1, ...
详细信息
This paper compares video and audio QoE of OFDMA multi-user transmission and reliable groupcast over wireless LAN. We assume video and audio transmission to several terminals simultaneously. As a reliable groupcast me...
详细信息
In recent years,sodium-ion capacitors have attracted attention due to their cost-effectiveness,high power density and similar manufacturing process to lithium-ion ***,the utilization of oxide electrodes in traditional...
详细信息
In recent years,sodium-ion capacitors have attracted attention due to their cost-effectiveness,high power density and similar manufacturing process to lithium-ion ***,the utilization of oxide electrodes in traditional sodium-ion capacitors restricts their further advancement due to the inherent low operating voltage and electrolyte consumption based on their energy storage *** address these challenges,we incorporated Zn,Cu,Ti,and other elements into Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2) to synthesize P2-type Na_(0.7)Ni_(0.28)Mn_(0.6)Zn_(0.05)Cu_(0.02)Ti_(0.05)O_(2) with a modulated entropy and pillaring *** the synergistic interplay between the interlayer pillar and the entropy modulation within the layers,the material exhibits exceptional toughness,effectively shielding it from detrimental phase transitions at elevated voltage *** a result,the material showcases outstanding kinetic properties and long-term cycling stability across the voltage *** integrating these materials with hierarchical porous carbon nanospheres to form a"rocking chair"sodium-ion capacitor,the hybrid full device delivers a high energy density(171 Wh·kg^(-1))and high power density(5245 W·kg^(-1)),as well as outstanding cycling stability(77% capacity retention after 3000 cycles).This work provides an effective material development route to realize simultaneously high energy and power for next-generation sodium-ion capacitors.
CsSnI3 is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface...
详细信息
CsSnI3 is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface structures of CsSnI3. We generate surface structures with various stoichiometries, perform density functional theory calculations to create phase diagrams of the CsSnI3 (001), (110), and (100) surfaces, and determine the most stable surfaces under a wide range of Cs, Sn, and I chemical potentials. Under I-rich conditions, surfaces with Cs vacancies are stable, which lead to partially occupied surface states above the valence band maximum. Under I-poor conditions, we find the stoichiometric (100) surface to be stable under a wide region of the phase diagram, which does not have any surface states and can contribute to long charge-carrier lifetimes. Consequently, the I-poor (Sn-rich) conditions will be more beneficial to improve the device performance.
Aloe vera plant is known worldwide for its medicinal properties and application in gel-based products such as shampoo,soap,and ***,the demand for these gel-based products has led to a surplus production of Aloe vera p...
详细信息
Aloe vera plant is known worldwide for its medicinal properties and application in gel-based products such as shampoo,soap,and ***,the demand for these gel-based products has led to a surplus production of Aloe vera processing *** Aloe vera gel processing facility could generate up to 4000 kg of Aloe vera waste per *** the Aloe vera waste is being disposed to the landfill or used as fertilizer.A sustainable management system for the Aloe vera processing waste should be considered,due to the negative societal and environmental impacts of the currents waste disposal ***,this review focuses on various approaches that can be used to valorize Aloe vera waste into value-added products,such as animal and aquaculture feeds,biosorbents,biofuel and natural *** have reported Aloe vera waste for environmental applications biosorbents used for wastewater treatment of various *** studies have also reported on the valorization of Aloe vera waste for production of biofuels such as bioethanol,mixed alcohol fuels,biogas and *** vera waste could also be valorized through isolation and synthesis of natural polymers for application in wound dressing,tissue engineering and drug delivery *** vera waste valorization was also reviewed through extraction of value-added bioactive compounds such as aloe-emodin,aloin and *** value-added bioactive compounds have various applications in the cosmetics(non-steroidal anti-inflammatory,tyrosinase inhibitors)and pharmaceutical(anticancer agent and COVID 19 inhibitors)industry.
In this paper,we used Corn Stalk(CS)as a renewable and economical bio template to fabricate willemite scaffolds with the potential application in skull bone *** was used as a sacrificial template to synthesize the ***...
详细信息
In this paper,we used Corn Stalk(CS)as a renewable and economical bio template to fabricate willemite scaffolds with the potential application in skull bone *** was used as a sacrificial template to synthesize the *** scaffolds with the chemical formula of Zn2SiO4 and pore size in the range of 3 to 10µm could be successfully synthesized by soaking CS in the willemite solution for 24 h and sintering at 950°C for 5 *** porosity of the samples was controlled by the soaking time(between 12 and 48 h)in the willemite solution from 5 to 35%,*** properties of these scaffolds showed a good approximation with cranial bone *** addition,cytotoxicity assays(MTT)were performed on Human Bone Marrow Stromal cells(HBMSc)and A172 human glioblastoma cell lines by direct and indirect culture methods to estimate their toxicity for bone and nerve cells,*** Phosphatase(ALP)activity and DAPI/Phalloidin cell staining were also performed to investigate the efficiency of the scaffolds for bone tissue engineering *** results showed that the scaffolds had good biocompatibility with both HBMSC and A172 cells,noticeable improvement on ALP activity,and great apatite formation ability in Simulated Body Fluid(SBF).All the evidence ascertained that willemite scaffolds made by corn stalks could be a useful candidate for bone tissue engineering applications.
Global trading is undergoing significant changes, necessitating modifications to the trading strategies. This study presents a newly developed cloud-based trading strategy that uses Amazon Web Services (AWS), machine ...
详细信息
By decoupling temperature and flow fields through symmetry-correlated laser scan sequences,ISO-FLUCS enables quasi-isothermal optofluidic microscale *** technique offers precise control over fluid manipulation while m...
详细信息
By decoupling temperature and flow fields through symmetry-correlated laser scan sequences,ISO-FLUCS enables quasi-isothermal optofluidic microscale *** technique offers precise control over fluid manipulation while minimizing thermal damage.
The phenomenon of oxygen adsorption induced surface restructuring is widespread across various metal-oxygen systems, yet its impact on initiating bulk oxide formation remains largely unexplored. Through in situ atomic...
详细信息
The phenomenon of oxygen adsorption induced surface restructuring is widespread across various metal-oxygen systems, yet its impact on initiating bulk oxide formation remains largely unexplored. Through in situ atomic-resolution electron microscopy observations of surface oxidation of Cu(110) and Cu85Au15(110), we unveil intermittent oxide-film growth modulated by oxygen-induced surface restructuring. This modulation is evidenced by repeated pinning of the Cu2O growth front at isolated Cu columns of the c(6×2)-O reconstruction, owing to required long-range diffusion of Cu and O atoms to the Cu2O growth front. We reveal that Cu vacancies, generated at the Cu2O growth front, are injected into the Cu2O/Cu interface, inducing hill and valley undulation of the Cu2O film. In contrast, atomic vacancies produced during the Cu85Au15(110) oxidation preferentially migrate into interfaces between Au-rich and Au-poor regions in the bulk, resulting in a flat and adherent Cu2O film. These findings demonstrate the critical role of oxygen-induced surface restructuring in modulating oxide film growth kinetics and the manipulability of the fate of injected vacancies by alloying, thereby offering insights applicable to a broader range of metal-oxygen systems for fine-tuning oxidation kinetics and enhancing oxide/metal interfacial adhesion.
暂无评论