The COVID-19 pandemic has already ravaged the world for two years and infected more than 600 million people, having an irreparable impact on the health, economic, and political dimensions of human society. There have ...
详细信息
Food Infestation Detection is more important for food safety and health concerns. It is a challenging task to separate the grains into infested or non-infested. It is found that in the existing system, there is no eff...
详细信息
The proper functioning of many real-world applications in biometrics and surveillance depends on the robustness of face recognition systems against pose, and illumination variations. In this work, we employ ensemble s...
详细信息
We study the minimum spanning tree cycle intersection (MSTCI) problem on outerplanar graphs in this paper. Consider a connected simple graph G=(V,E) and any spanning tree T=(V,ET) of G, it is well-known that each non-...
详细信息
Multi-path avoidance routing for wireless sensor networks (WSNs) is a secure routing paradigm against adversaries with unbounded computational power. The key idea of avoidance routing is to encode a message into sever...
详细信息
Multi-path avoidance routing for wireless sensor networks (WSNs) is a secure routing paradigm against adversaries with unbounded computational power. The key idea of avoidance routing is to encode a message into several pieces by the XOR coding, and each piece is routed via different paths. Then, an adversary cannot obtain the original message unless she eavesdrops on all message pieces from all the paths. In this paper, we extend such an approach into secure multicast routing, which is a one-to-many communication primitive. To this end, we propose the multi-tree-based avoidance multicast routing protocol (AMRP) for WSNs, in which a set of adversary disjoint trees is discovered, i.e., a set of multicast trees with no common adversaries. When a set of multicast trees is adversary disjoint, no adversary can eavesdrop on all message pieces to recover the original message. In addition, optimized AMRP (OAMRP) is proposed in order to reduce the control overhead of AMRP, where additional multicast trees are used for only a subset of destination nodes with no single safe tree. The simulation results demonstrate that the proposed protocols achieve higher secure delivery rates than a simple extension of the existing unicast avoidance routing protocol. IEEE
The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection *** recent studies have...
详细信息
The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection *** recent studies have made progress,a common challenge is the low accuracy of existing detection *** models often struggle to reliably identify corrosion tendencies,which are crucial for minimizing industrial risks and optimizing resource *** proposed study introduces an innovative approach that significantly improves the accuracy of corrosion detection using a convolutional neural network(CNN),as well as two pretrained models,namely YOLOv8 and *** leveraging advanced technologies and methodologies,we have achieved high accuracies in identifying and managing the hazards associated with corrosion across various industrial *** advancement not only supports the overarching goals of enhancing safety and efficiency,but also sets a new benchmark for future research in the *** results demonstrate a significant improvement in the ability to detect and mitigate corrosion-related concerns,providing a more accurate and comprehensive solution for industries facing these *** CNN and EfficientNetB0 exhibited 100%accuracy,precision,recall,and F1-score,followed by YOLOv8 with respective metrics of 95%,100%,90%,and 94.74%.Our approach outperformed state-of-the-art with similar datasets and methodologies.
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow *** cloud data centers,fog computing takes more time to run workflow ***,it is essenti...
详细信息
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow *** cloud data centers,fog computing takes more time to run workflow ***,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing *** task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog *** process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource *** this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local *** balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization *** FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response *** relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks.
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)a...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable *** data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network *** mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring *** unique determination of this study is the shortest path to reach *** the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static *** this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the *** methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide *** addition,a method of using MS scheduling for efficient data collection is *** simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...
详细信息
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome *** by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical ***,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a *** primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and *** proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer *** models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and *** was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation *** instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model *** 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the
Defects in multistage manufacturing processes (MMPs) decrease profitability and product quality. Therefore, MMP parameter optimization within a range is essential to prevent defects, achieve dynamic accuracy, and acco...
详细信息
暂无评论