咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 39 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 22 篇 生物工程
    • 20 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 13 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 安全科学与工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 36 篇 理学
    • 22 篇 生物学
    • 11 篇 数学
    • 11 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 4 篇 化学
    • 2 篇 系统科学
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学

主题

  • 4 篇 image segmentati...
  • 4 篇 accuracy
  • 3 篇 deep learning
  • 3 篇 training
  • 2 篇 image enhancemen...
  • 2 篇 support vector m...
  • 2 篇 deep neural netw...
  • 2 篇 three-dimensiona...
  • 2 篇 diagnosis
  • 2 篇 benchmarking
  • 2 篇 embeddings
  • 2 篇 floods
  • 2 篇 linear transform...
  • 2 篇 computer vision
  • 2 篇 sensors
  • 1 篇 global positioni...
  • 1 篇 patient monitori...
  • 1 篇 lesions
  • 1 篇 mammography
  • 1 篇 object detection

机构

  • 4 篇 department of co...
  • 4 篇 department of co...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 lausanne
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 department of ma...
  • 3 篇 centre for visio...
  • 2 篇 university of sc...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 image processing...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 university of be...
  • 2 篇 dynamic vision a...

作者

  • 6 篇 yaqub mohammad
  • 6 篇 reid ian
  • 6 篇 schiele bernt
  • 4 篇 saeed numan
  • 4 篇 rezatofighi hami...
  • 4 篇 ridzuan muhammad
  • 4 篇 carneiro gustavo
  • 3 篇 fischer jonas
  • 3 篇 roth stefan
  • 3 篇 böhle moritz
  • 3 篇 mohsen guizani
  • 3 篇 cremers daniel
  • 3 篇 weinmann andreas
  • 2 篇 gao zhenguo
  • 2 篇 wang yakai
  • 2 篇 galdran adrian
  • 2 篇 ahmed sharshar
  • 2 篇 zimmerer david
  • 2 篇 wu xiaoxiao
  • 2 篇 fritz mario

语言

  • 63 篇 英文
  • 10 篇 其他
检索条件"机构=Department for Computer Vision and Machine Learning"
73 条 记 录,以下是1-10 订阅
排序:
Breast cancer classification in point-of-care ultrasound imaging—the impact of training data
收藏 引用
Journal of Medical Imaging 2025年 第1期12卷 014502页
作者: Karlsson, Jennie Arvidsson, Ida Sahlin, Freja Åström, Kalle Overgaard, Niels Christian Lång, Kristina Heyden, Anders Lund University Centre for Mathematical Sciences Division of Computer Vision and Machine Learning Lund Sweden Lund University Division of Diagnostic Radiology Department of Translational Medicine Lund Sweden Skåne University Hospital Unilabs Mammography Unit Malmö Sweden
Purpose: The survival rate of breast cancer for women in low- and middle-income countries is poor compared with that in high-income countries. Point-of-care ultrasound (POCUS) combined with deep learning could potenti... 详细信息
来源: 评论
Pulmofusion: Advancing Pulmonary Health with Efficient Multi-Modal Fusion
Pulmofusion: Advancing Pulmonary Health with Efficient Multi...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Ahmed Sharshar Yasser Attia Mohammad Yaqub Mohsen Guizani Department of Computer Vision MBZUAI UAE Department of Machine Learning MBZUAI UAE
Traditional remote spirometry lacks the precision required for effective pulmonary monitoring. We present a novel, non-invasive approach using multimodal predictive models that integrate RGB or thermal video data with... 详细信息
来源: 评论
PULMOFUSION: ADVANCING PULMONARY HEALTH WITH EFFICIENT MULTI-MODAL FUSION
arXiv
收藏 引用
arXiv 2025年
作者: Sharshar, Ahmed Attia, Yasser Yaqub, Mohammad Guizani, Mohsen Department of Computer Vision MBZUAI United Arab Emirates Department of Machine Learning MBZUAI United Arab Emirates
Traditional remote spirometry lacks the precision required for effective pulmonary monitoring. We present a novel, non-invasive approach using multimodal predictive models that integrate RGB or thermal video data with... 详细信息
来源: 评论
An Enhancement of Object Detection Using YOLO V8 and Mobile Net in Challenging Conditions
收藏 引用
SN computer Science 2025年 第4期6卷 1-20页
作者: Pasupuleti, Shailaja Ramalakshmi, K. Gunasekaran, Hemalatha Arokiaraj, Rex Macedo Debnath, Saswati Jebaseeli, T. Jemima Department of Computer Science and Engineering Alliance University Karnataka Anekal Bangalore India AU-Centre of Excellence Department of Computer Vision Alliance University Karnataka Anekal Bangalore India College of Computing and Information Sciences University of Technology and Applied Sciences Ibri Oman Department of Information Technology College of Computing and Information Sciences University of Technology and Applied Sciences Ibri Oman Department of Computer Science and Engineering Alliance University Karnataka Bangalore India Division of Artificial Intelligence and Machine Learning Karunya Institute of Technology and Sciences Coimbatore India
Autonomous drones and deep learning neural networks are becoming popular tools to revolutionize aircraft operations by partially automating visual inspection processes in aircraft maintenance. The research aims to pro... 详细信息
来源: 评论
A Comprehensive Analysis of Mamba for 3D Volumetric Medical Image Segmentation
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Chaohan Xie, Yutong Chen, Qi Zhou, Yuyin Wu, Qi Australian Institute for Machine Learning The University of Adelaide Adelaide Australia Computer Vision Department MBZUAI Abu Dhabi United Arab Emirates Computer Science and Engineering Department UC Santa Cruz Santa Cruz United States
Mamba, with its selective State Space Models (SSMs), offers a more computationally efficient solution than Transformers for long-range dependency modeling. However, there is still a debate about its effectiveness in h...
来源: 评论
UAV-Assisted Real-Time Disaster Detection Using Optimized Transformer Model
arXiv
收藏 引用
arXiv 2025年
作者: Jankovic, Branislava Jangirova, Sabina Ullah, Waseem Khan, Latif U. Guizani, Mohsen Computer Vision Department Mohamed Bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates
Dangerous surroundings and difficult-to-reach landscapes introduce significant complications for adequate disaster management and recuperation. These problems can be solved by engaging unmanned aerial vehicles (UAVs) ... 详细信息
来源: 评论
SIR-HCL: Semantic-Inconsistency Reasoning and Hybrid Contrastive learning for Efficient Cross-Emotion Anomaly Detection
收藏 引用
IEEE Transactions on Cognitive and Developmental Systems 2025年
作者: Liu, Xin Chen, Qiyan Cheung, Yiu-Ming Peng, Shu-Juan Huaqiao University Department of Computer Science Xiamen361021 China Hong Kong Baptist University Department of Computer Science SAR Hong Kong Hong Kong Xiamen Key Laboratory of Computer Vision and Pattern Recognition Xiamen361021 China Huaqiao University Fujian Key Laboratory of Big Data Intelligence and Security Xiamen361021 China Huaqiao University Department of Artificial Intelligence Xiamen China Fujian Province University Key Laboratory of Computer Vision and Machine Learning Huaqiao University Xiamen361021 China
Cross-emotion anomaly detection is an emerging and challenging research topic in cognitive analysis field, which aims at identifying the abnormal emotion pair whose semantic patterns are inconsistent across different ... 详细信息
来源: 评论
FetalCLIP: A Visual-Language Foundation Model for Fetal Ultrasound Image Analysis
arXiv
收藏 引用
arXiv 2025年
作者: Maani, Fadillah Saeed, Numan Saleem, Tausifa Farooq, Zaid Alasmawi, Hussain Diehl, Werner Mohammad, Ameera Waring, Gareth Valappi, Saudabi Bricker, Leanne Yaqub, Mohammad Department of Computer Vision Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Department of Machine Learning Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Abu Dhabi United Arab Emirates
Foundation models are becoming increasingly effective in the medical domain, offering pre-trained models on large datasets that can be readily adapted for downstream tasks. Despite progress, fetal ultrasound images re... 详细信息
来源: 评论
Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
arXiv
收藏 引用
arXiv 2025年
作者: Saeed, Numan Hardan, Shahad Ridzuan, Muhammad Saadi, Nada Nandakumar, Karthik Yaqub, Mohammad Department of Computer Vision Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Department of Machine Learning Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Michigan State University Michigan United States M42 Health Abu Dhabi United Arab Emirates
Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. Howeve... 详细信息
来源: 评论
Enhancing the Prediction of Lymph Node Metastasis in Early Breast Cancer Using Deep learning on Routine Full-Breast Mammograms
Research Square
收藏 引用
Research Square 2025年
作者: Zhang, Daqu Dihge, Looket Bendahl, Pär-Ola Arvidsson, Ida Dustler, Magnus Ellbrant, Julia Gulis, Kim Hjärtström, Malin Ohlsson, Mattias Rejmer, Cornelia Schmidt, David Zackrisson, Sophia Edén, Patrik Rydén, Lisa Centre for Environmental and Climate Science Computational Science for Health and Environment Lund University Lund Sweden Department of Clinical Sciences Division of Surgery Lund University Skåne University Hospital Lund Sweden Department of Plastic and Reconstructive Surgery Skåne University Hospital Malmö Sweden Department of Clinical Sciences Division of Oncology Lund University Lund Sweden Centre for Mathematical Sciences Division of Computer Vision and Machine Learning Lund University Lund Sweden Department of Translational Medicine Diagnostic Radiology Lund University Malmö Lund Sweden Department of Surgery and Gastroenterology Skåne University Hospital Malmö Sweden Department of Surgery Kristianstad Central Hospital Kristianstad Sweden Department of Clinical Sciences Anesthesiology and Intensive Care Lund University Lund Sweden Department of Medical Imaging and Physiology Skåne University Hospital Malmö Sweden
Background: With a trend toward de-escalation of axillary surgery in breast cancer, prediction models incorporating imaging modalities can help reassess the need for surgical axillary staging. Although mammography is ... 详细信息
来源: 评论