咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 39 篇 计算机科学与技术...
    • 38 篇 软件工程
    • 22 篇 生物工程
    • 20 篇 光学工程
    • 16 篇 生物医学工程(可授...
    • 13 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 4 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 化学工程与技术
    • 3 篇 安全科学与工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
  • 36 篇 理学
    • 22 篇 生物学
    • 11 篇 数学
    • 11 篇 物理学
    • 6 篇 统计学(可授理学、...
    • 4 篇 化学
    • 2 篇 系统科学
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学

主题

  • 4 篇 image segmentati...
  • 4 篇 accuracy
  • 3 篇 deep learning
  • 3 篇 training
  • 2 篇 image enhancemen...
  • 2 篇 support vector m...
  • 2 篇 deep neural netw...
  • 2 篇 three-dimensiona...
  • 2 篇 diagnosis
  • 2 篇 benchmarking
  • 2 篇 embeddings
  • 2 篇 floods
  • 2 篇 linear transform...
  • 2 篇 computer vision
  • 2 篇 sensors
  • 1 篇 global positioni...
  • 1 篇 patient monitori...
  • 1 篇 lesions
  • 1 篇 mammography
  • 1 篇 object detection

机构

  • 4 篇 department of co...
  • 4 篇 department of co...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 lausanne
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 department of ma...
  • 3 篇 centre for visio...
  • 2 篇 university of sc...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 image processing...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 university of be...
  • 2 篇 dynamic vision a...

作者

  • 6 篇 yaqub mohammad
  • 6 篇 reid ian
  • 6 篇 schiele bernt
  • 4 篇 saeed numan
  • 4 篇 rezatofighi hami...
  • 4 篇 ridzuan muhammad
  • 4 篇 carneiro gustavo
  • 3 篇 fischer jonas
  • 3 篇 roth stefan
  • 3 篇 böhle moritz
  • 3 篇 mohsen guizani
  • 3 篇 cremers daniel
  • 3 篇 weinmann andreas
  • 2 篇 gao zhenguo
  • 2 篇 wang yakai
  • 2 篇 galdran adrian
  • 2 篇 ahmed sharshar
  • 2 篇 zimmerer david
  • 2 篇 wu xiaoxiao
  • 2 篇 fritz mario

语言

  • 63 篇 英文
  • 10 篇 其他
检索条件"机构=Department for Computer Vision and Machine Learning"
73 条 记 录,以下是1-10 订阅
排序:
Breast cancer classification in point-of-care ultrasound imaging—the impact of training data
收藏 引用
Journal of Medical Imaging 2025年 第1期12卷 014502页
作者: Karlsson, Jennie Arvidsson, Ida Sahlin, Freja Åström, Kalle Overgaard, Niels Christian Lång, Kristina Heyden, Anders Lund University Centre for Mathematical Sciences Division of Computer Vision and Machine Learning Lund Sweden Lund University Division of Diagnostic Radiology Department of Translational Medicine Lund Sweden Skåne University Hospital Unilabs Mammography Unit Malmö Sweden
Purpose: The survival rate of breast cancer for women in low- and middle-income countries is poor compared with that in high-income countries. Point-of-care ultrasound (POCUS) combined with deep learning could potenti... 详细信息
来源: 评论
Pulmofusion: Advancing Pulmonary Health with Efficient Multi-Modal Fusion
Pulmofusion: Advancing Pulmonary Health with Efficient Multi...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Ahmed Sharshar Yasser Attia Mohammad Yaqub Mohsen Guizani Department of Computer Vision MBZUAI UAE Department of Machine Learning MBZUAI UAE
Traditional remote spirometry lacks the precision required for effective pulmonary monitoring. We present a novel, non-invasive approach using multimodal predictive models that integrate RGB or thermal video data with... 详细信息
来源: 评论
PULMOFUSION: ADVANCING PULMONARY HEALTH WITH EFFICIENT MULTI-MODAL FUSION
arXiv
收藏 引用
arXiv 2025年
作者: Sharshar, Ahmed Attia, Yasser Yaqub, Mohammad Guizani, Mohsen Department of Computer Vision MBZUAI United Arab Emirates Department of Machine Learning MBZUAI United Arab Emirates
Traditional remote spirometry lacks the precision required for effective pulmonary monitoring. We present a novel, non-invasive approach using multimodal predictive models that integrate RGB or thermal video data with... 详细信息
来源: 评论
Optimizing 7-DOF Robot Manipulator Path Using Deep Reinforcement learning Techniques
Optimizing 7-DOF Robot Manipulator Path Using Deep Reinforce...
收藏 引用
International Workshop on Robot Sensing (ROSE)
作者: Mariam Kashkash Abdulmotaleb El Saddik Mohsen Guizani Machine Learning Department MBZUAI UAE University of Ottawa Canada Computer Vision Department MBZUAI UAE
This paper proposes three different Deep Rein-forcement learning (DRL) techniques to find a free-obstacle path for a 7-DOF Robot Manipulator (RM). The robot is the Kinova Jaco Assistive Robot arm; its DH parameters an... 详细信息
来源: 评论
Underwater Object Detection Enhancement via Channel Stabilization
Underwater Object Detection Enhancement via Channel Stabiliz...
收藏 引用
2022 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2022
作者: Ali, Muhammad Khan, Salman Department of Machine Learning Mohamed bin Zayed University of AI Abu Dhabi UAE Department of Computer Vision Mohamed bin Zayed University of AI Abu Dhabi UAE
The complex marine environment exacerbates the challenges of object Abstract-The complex marine environment exacerbates the challenges of object detection manifold. With the advent of the modern era, marine trash pres... 详细信息
来源: 评论
Pruning neural network models for gene regulatory dynamics using data and domain knowledge  38
Pruning neural network models for gene regulatory dynamics u...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hossain, Intekhab Fischer, Jonas Burkholz, Rebekka Quackenbush, John Department of Biostatistics Harvard T.H. Chan School of Public Health BostonMA02115 United States Dep. for Computer Vision and Machine Learning Max Planck Institute for Informatics Saarbrücken Germany Helmholtz Center CISPA for Information Security Saarbrücken Germany
The practical utility of machine learning models in the sciences often hinges on their interpretability. It is common to assess a model's merit for scientific discovery, and thus novel insights, by how well it ali...
来源: 评论
An Enhancement of Object Detection Using YOLO V8 and Mobile Net in Challenging Conditions
收藏 引用
SN computer Science 2025年 第4期6卷 1-20页
作者: Pasupuleti, Shailaja Ramalakshmi, K. Gunasekaran, Hemalatha Arokiaraj, Rex Macedo Debnath, Saswati Jebaseeli, T. Jemima Department of Computer Science and Engineering Alliance University Karnataka Anekal Bangalore India AU-Centre of Excellence Department of Computer Vision Alliance University Karnataka Anekal Bangalore India College of Computing and Information Sciences University of Technology and Applied Sciences Ibri Oman Department of Information Technology College of Computing and Information Sciences University of Technology and Applied Sciences Ibri Oman Department of Computer Science and Engineering Alliance University Karnataka Bangalore India Division of Artificial Intelligence and Machine Learning Karunya Institute of Technology and Sciences Coimbatore India
Autonomous drones and deep learning neural networks are becoming popular tools to revolutionize aircraft operations by partially automating visual inspection processes in aircraft maintenance. The research aims to pro... 详细信息
来源: 评论
Sailing in high-dimensional spaces: Low-dimensional embeddings through angle preservation
arXiv
收藏 引用
arXiv 2024年
作者: Fischer, Jonas Ma, Rong Department for Computer Vision and Machine Learning Max Planck Institute for Informatics Saarbrücken Germany Department for Biostatistics Harvard University BostonMA United States
Low-dimensional embeddings (LDEs) of high-dimensional data are ubiquitous in science and engineering. They allow us to quickly understand the main properties of the data, identify outliers and processing errors, and i... 详细信息
来源: 评论
MRIShift: Disentangled Representation learning for 3D MRI Lesion Segmentation Under Distributional Shifts
MRIShift: Disentangled Representation Learning for 3D MRI Le...
收藏 引用
European Workshop on Visual Information Processing (EUVIP)
作者: Umaima Rahman Guangyi Chen Kun Zhang Computer Vision Department Mohamed Bin Zayed University of Artificial Intelligence Abu Dhabi UAE Machine Learning Department Carnegie Mellon University Pittsburgh PA USA
In the clinical environment, heterogeneity of data coming from different centers poses challenges where the data may not conform to the assumption of being independent and identically distributed (i.i.d). As a result,... 详细信息
来源: 评论
How to Choose a Reinforcement-learning Algorithm
arXiv
收藏 引用
arXiv 2024年
作者: Bongratz, Fabian Golkov, Vladimir Mautner, Lukas Libera, Luca Della Heetmeyer, Frederik Czaja, Felix Rodemann, Julian Cremers, Daniel Computer Vision Group Technical University of Munich Germany Munich Center for Machine Learning Germany Department of Statistics Ludwig-Maximilians-Universität Munich Germany
The field of reinforcement learning offers a large variety of concepts and methods to tackle sequential decision-making problems. This variety has become so large that choosing an algorithm for a task at hand can be c... 详细信息
来源: 评论