咨询与建议

限定检索结果

文献类型

  • 18 篇 会议
  • 16 篇 期刊文献

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 23 篇 工学
    • 18 篇 计算机科学与技术...
    • 11 篇 软件工程
    • 9 篇 控制科学与工程
    • 6 篇 信息与通信工程
    • 5 篇 生物医学工程(可授...
    • 3 篇 生物工程
    • 2 篇 电气工程
    • 2 篇 网络空间安全
    • 1 篇 力学(可授工学、理...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 13 篇 理学
    • 10 篇 数学
    • 6 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 4 篇 系统科学
    • 1 篇 物理学
    • 1 篇 化学
  • 6 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 3 篇 图书情报与档案管...
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 药学(可授医学、理...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 2 篇 stochastic syste...
  • 2 篇 nonlinear system...
  • 1 篇 neurons
  • 1 篇 reinforcement le...
  • 1 篇 approximation al...
  • 1 篇 function approxi...
  • 1 篇 electroencephalo...
  • 1 篇 digital elevatio...
  • 1 篇 cost effectivene...
  • 1 篇 signal encoding
  • 1 篇 psychology
  • 1 篇 neural networks
  • 1 篇 integrally stric...
  • 1 篇 wave functions
  • 1 篇 manipulators
  • 1 篇 noise
  • 1 篇 robots
  • 1 篇 eyes
  • 1 篇 learning
  • 1 篇 interfaces (comp...

机构

  • 6 篇 department empir...
  • 3 篇 max planck insti...
  • 3 篇 machine learning...
  • 2 篇 machine learning...
  • 2 篇 empirical infere...
  • 2 篇 institute for ma...
  • 2 篇 machine learning...
  • 2 篇 tübingen ai cent...
  • 2 篇 department of co...
  • 2 篇 machine learning...
  • 2 篇 empirical infere...
  • 2 篇 machine learning...
  • 2 篇 tübingen ai cent...
  • 1 篇 probabilistic le...
  • 1 篇 machine learning...
  • 1 篇 machine learning...
  • 1 篇 machine learning...
  • 1 篇 neuroscience ins...
  • 1 篇 helmholtz ai
  • 1 篇 department of co...

作者

  • 10 篇 macke jakob h.
  • 5 篇 vetter julius
  • 5 篇 gao richard
  • 5 篇 jakob h. macke
  • 4 篇 schölkopf bernha...
  • 4 篇 schröder corneli...
  • 4 篇 pei felix
  • 4 篇 gloeckler manuel
  • 4 篇 kapoor jaivardha...
  • 3 篇 schulz auguste
  • 3 篇 deistler michael
  • 3 篇 richard gao
  • 3 篇 moss guy
  • 2 篇 julius vetter
  • 2 篇 cornelius schröd...
  • 2 篇 manuel gloeckler
  • 2 篇 felix pei
  • 2 篇 pals matthijs
  • 2 篇 michael deistler
  • 2 篇 peters jan

语言

  • 31 篇 英文
  • 3 篇 其他
检索条件"机构=Department for Empirical Inference for Machine Learning and Perception"
34 条 记 录,以下是1-10 订阅
排序:
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation  38
Sourcerer: Sample-based Maximum Entropy Source Distribution ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Vetter, Julius Schröder, Cornelius Moss, Guy Gao, Richard Macke, Jakob H. Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen Germany Tübingen AI Center Germany Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientific modeling applications often require estimating a distribution of parameters consistent with a dataset of observations-an inference task also known as source distribution estimation. This problem can be ill-...
来源: 评论
Latent Diffusion for Neural Spiking Data  38
Latent Diffusion for Neural Spiking Data
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Kapoor, Jaivardhan Schulz, Auguste Vetter, Julius Pei, Felix Gao, Richard Macke, Jakob H. Machine Learning in Science University of Tübingen & Tübingen AI Center Tübingen Germany Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Modern datasets in neuroscience enable unprecedented inquiries into the relationship between complex behaviors and the activity of many simultaneously recorded neurons. While latent variable models can successfully ex...
来源: 评论
Sourcerer: sample-based maximum entropy source distribution estimation  24
Sourcerer: sample-based maximum entropy source distribution ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Julius Vetter Guy Moss Cornelius Schröder Richard Gao Jakob H. Macke Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen and Tübingen AI Center Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen and Tübingen AI Center and Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientific modeling applications often require estimating a distribution of parameters consistent with a dataset of observations—an inference task also known as source distribution estimation. This problem can be ill...
来源: 评论
Adaptive deep probabilistic regression for real-time motor excitability state prediction from human EEG
收藏 引用
Brain Stimulation 2025年 第1期18卷 400-401页
作者: Haxel, Lisa Kapoor, Jaivardhan Ahola, Oskari Kahilakoski, Olli-Pekka Kirchhoff, Miriam Roine, Timo Ziemann, Ulf Macke, Jakob H. Machine Learning in Science Excellence Cluster Machine Learning & Tübingen AI Center Germany Hertie Institute for Clinical Brain Research Department Neurology and Stroke Germany Department of Neuroscience and Biomedical Engineering Aalto University School of Science Finland Department Empirical Inference Max Planck Institute for Intelligent Systems Germany
来源: 评论
Metrizing weak convergence with maximum mean discrepancies
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2023年 第1期24卷 8764-8783页
作者: Carl-Johann Simon-Gabriel Alessandro Barp Bernhard Schölkopf Lester Mackey Institute for Machine Learning ETH Zürich Switzerland Empirical Inference Department MPI for Intelligent Systems Tübingen GermanyDepartment of Engineering University of Cambridge Alan Turing Institute UK Empirical Inference Department MPI for Intelligent Systems Tübingen Germany Microsoft Research Cambridge MA
This paper characterizes the maximum mean discrepancies (MMD) that metrize the weak convergence of probability measures for a wide class of kernels. More precisely, we prove that, on a locally compact, non-compact, Ha... 详细信息
来源: 评论
Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation
arXiv
收藏 引用
arXiv 2024年
作者: Vetter, Julius Moss, Guy Schröder, Cornelius Gao, Richard Macke, Jakob H. Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen Tübingen Germany Tübingen AI Center Tübingen Germany Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Scientific modeling applications often require estimating a distribution of parameters consistent with a dataset of observations—an inference task also known as source distribution estimation. This problem can be ill... 详细信息
来源: 评论
Latent Diffusion for Neural Spiking Data
arXiv
收藏 引用
arXiv 2024年
作者: Kapoor, Jaivardhan Schulz, Auguste Vetter, Julius Pei, Felix Gao, Richard Macke, Jakob H. Machine Learning in Science University of Tübingen & Tübingen AI Center Tübingen Germany Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Modern datasets in neuroscience enable unprecedented inquiries into the relationship between complex behaviors and the activity of many simultaneously recorded neurons. While latent variable models can successfully ex... 详细信息
来源: 评论
Simultaneous identification of models and parameters of scientific simulators  24
Simultaneous identification of models and parameters of scie...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Cornelius Schröder Jakob H. Macke Machine Learning in Science University of Tübingen and Tübingen AI Center Germany Machine Learning in Science University of Tübingen and Tübingen AI Center Germany and Max Planck Institute for Intelligent Systems Department Empirical Inference Tübingen Germany
Many scientific models are composed of multiple discrete components, and scientists often make heuristic decisions about which components to include. Bayesian inference provides a mathematical framework for systematic...
来源: 评论
Generalized Bayesian inference for scientific simulators via amortized cost estimation  23
Generalized Bayesian inference for scientific simulators via...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Richard Gao Michael Deistler Jakob H. Macke Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen and Tübingen AI Center Machine Learning in Science Excellence Cluster Machine Learning University of Tübingen and Tübingen AI Center and Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Simulation-based inference (SBI) enables amortized Bayesian inference for simulators with implicit likelihoods. But when we are primarily interested in the quality of predictive simulations, or when the model cannot e...
来源: 评论
Latent diffusion for neural spiking data  24
Latent diffusion for neural spiking data
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Jaivardhan Kapoor Auguste Schulz Julius Vetter Felix Pei Richard Gao Jakob H. Macke Machine Learning in Science University of Tübingen & Tübingen AI Center Tübingen Germany Machine Learning in Science University of Tübingen & Tübingen AI Center Tübingen Germany and Department Empirical Inference Max Planck Institute for Intelligent Systems Tübingen Germany
Modern datasets in neuroscience enable unprecedented inquiries into the relationship between complex behaviors and the activity of many simultaneously recorded neurons. While latent variable models can successfully ex...
来源: 评论