We have investigated the solidified microstructure of nucleation-generated grains obtained via complete melting of Si films on SiO2 at high nucleation temperatures. This was achieved using a high-temperature-capable h...
详细信息
We have investigated the solidified microstructure of nucleation-generated grains obtained via complete melting of Si films on SiO2 at high nucleation temperatures. This was achieved using a high-temperature-capable hot stage in conjunction with excimer laser irradiation. As predicted by the direct-growth model that considers (1) the evolution in the temperature of the solidifying interface and (2) the subsequent modes of growth (consisting of amorphous, defective, and epitaxial) as key factors, we were able to observe the appearance of “normal” grains that possess a single-crystal core area. These grains, which are in contrast to previously reported flower-shaped grains that fully make up the microstructure of the solidified films obtained via irradiation at lower preheating temperatures (and amongst which these “normal” grains emerge), indicate that epitaxial growth of nucleated crystals must have taken place within the grains. We discuss the implications of our findings regarding (1) the validity of the direct-growth model, (2) the nature of the heterogeneous nucleation mechanism, and (3) the alternative explanations and assumptions that have been previously employed in order to explain the microstructure of Si films obtained via nucleation and growth within the complete melting regime.
Gd2Sn2O7 and Gd2Ti2O7 have been regarded as good experimental realizations of the classical Heisenberg pyrochlore antiferromagnet with dipolar interaction. The former was found to adopt the Palmer-Chalker state via a ...
详细信息
Gd2Sn2O7 and Gd2Ti2O7 have been regarded as good experimental realizations of the classical Heisenberg pyrochlore antiferromagnet with dipolar interaction. The former was found to adopt the Palmer-Chalker state via a single, first-order transition at TN≈1K, while the latter enters a distinct, partially ordered state through two successive transitions at TN1≈1K and TN2=0.75K. To shed more light on their distinct magnetic ground states, we have synthesized two more gadolinium-based pyrochlore oxides, Gd2Ge2O7 and Gd2Pt2O7, under high-pressure conditions and performed detailed characterizations via x-ray powder diffraction, dc and ac magnetic susceptibility, and specific heat measurements down to 100 mK. We found that both compounds enter a long-range antiferromagnetically ordered state through a single, first-order transition at TN=1.4K for Gd2Ge2O7 and TN=1.56K for Gd2Pt2O7, with the specific heat anomaly similar to that of Gd2Sn2O7 rather than Gd2Ti2O7. Interestingly, the low-temperature magnetic specific heat values of both Gd2Ge2O7 and Gd2Pt2O7 were found to follow nicely the T3 dependence as expected for a three-dimensional antiferromagnet with gapless spin-wave excitations. We have rationalized the enhancement of TN in terms of the reduced Gd-Gd distances for the chemically pressurized Gd2Ge2O7 and the addition of extra superexchange pathways through the empty Pt−eg orbitals for Gd2Pt2O7. Our current study has expanded the family of gadolinium-based pyrochlores and permits us to achieve a better understanding of their distinct magnetic properties in a more comprehensive perspective.
Correction for ‘High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process’ by Hongyan Sun et al., J. Mater. Chem. C, 2017, 5, 1880–1884.
Correction for ‘High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process’ by Hongyan Sun et al., J. Mater. Chem. C, 2017, 5, 1880–1884.
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ≈0.75, a value that is similar to close packing of equal-sized spheres. ...
详细信息
Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ≈0.75, a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ≈0.56, which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.
Cyclic plastic deformation characteristics in the low cycle fatigue (LCF) regime of AA6063 Al-alloy subjected to three widely different aging conditions, namely: highly under aged (HUA), peak aged (PA) and highly over...
Cyclic plastic deformation characteristics in the low cycle fatigue (LCF) regime of AA6063 Al-alloy subjected to three widely different aging conditions, namely: highly under aged (HUA), peak aged (PA) and highly over aged (HOA), have been simulated by finite element method considering Chaboche as well as Ohno-Wang phenomenological cyclic plasticity models. Results of LCF tests under the investigated strain ranges (0.4-1.0%) reveal that HUA state demonstrates significant cyclic hardening and better fatigue life compared to PA and HOA states. Simulation of stabilized hysteresis loops considering kinematic hardening formulation by Ohno-Wang model exhibits better correlation over Chaboche model.
We will then report our recent work on the effect of temperature and component size on the deformation and failure of nanolattices under compression using both nanomechanical testing and molecular dynamics ***,we disc...
We will then report our recent work on the effect of temperature and component size on the deformation and failure of nanolattices under compression using both nanomechanical testing and molecular dynamics ***,we discuss the effect of notch on the failure behavior of nanolattices under
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mitsuo Kawato F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons Vladislav Sekulić, Frances K. Skinner F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks. Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi O3 Modeling auditory stream segregation, build-up and bistability James Rankin, Pamela Osborn Popp, John Rinzel O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields Alejandro Tabas, André Rupp, Emili Balaguer-Ballester O5 A simple model of retinal response to multi-electrode stimulation Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer O7 Input-location dependent gain modulation in cerebellar nucleus neurons Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Ni
暂无评论