We observed that, in an undoped GaAs 1-x N x single epilayer, terahertz electromagnetic waves from coherent GaAs-like longitudinal optical (LO) phonons have a long decay time in comparison with terahertz waves from c...
详细信息
ISBN:
(数字)9798350370324
ISBN:
(纸本)9798350370331
We observed that, in an undoped GaAs
1-x
N
x
single epilayer, terahertz electromagnetic waves from coherent GaAs-like longitudinal optical (LO) phonons have a long decay time in comparison with terahertz waves from coherent LO phonons in a GaAs single crystal. We attributed the origin of the present phenomena to the fact photogenerated electron-LO-phonon scattering is suppressed owing to reduction of the ultrafast photocurrent acceleration that originates both from relatively large electron effective mass caused by the band anticrossing and from the alloying effect due to the nitridation.
In terms of energy efficiency and computational speed, neuromorphic electronics based on nonvolatile memory devices are expected to be one of most promising hardware candidates for future artificial intelligence (AI)....
详细信息
In terms of energy efficiency and computational speed, neuromorphic electronics based on nonvolatile memory devices are expected to be one of most promising hardware candidates for future artificial intelligence (AI). However, catastrophic forgetting, networks rapidly overwriting previously learned weights when learning new tasks, remains a pivotal obstacle in either digital or analog AI chips for unleashing the true power of brainlike computing. To address catastrophic forgetting in the context of online memory storage, a complex synapse model (the Benna-Fusi model) was proposed recently [M. K. Benna and S. Fusi, Nat. Neurosci. 19, 1697 (2016)], the synaptic weight and internal variables of which evolve following diffusion dynamics. In this work, by designing a proton transistor with a series of charge-diffusion-controlled storage components, we have experimentally realized the Benna-Fusi artificial complex synapse. Memory consolidation from coupled storage components is revealed by both numerical simulations and experimental observations. Different memory timescales for the complex synapse are engineered by the diffusion length of charge carriers and the capacity and number of coupled storage components. The advantages of the demonstrated complex synapse for both memory capacity and memory consolidation are revealed by neural network simulations of face-familiarity detection. Our experimental realization of the complex synapse suggests a promising approach to enhance memory capacity and to enable continual learning.
Absorption rates for traditional adsorbents were predominately determined by the concentration gradient from bulk to absorbents and surface area. A novel sandwich-structured capacitor (SSC) containing adsorbents is de...
详细信息
Previous studies found that a surface with a Leidenfrost vapor layer can effectively decrease the drag of the flow field and even increase the slip length on the boundary flow. This study investigated this phenomenon ...
详细信息
Driven by the need for sustainable construction solutions, there is renewed interest in earth-based materials. Biopolymer stabilizers can enhance the rheological and structural properties of these materials to facilit...
详细信息
This paper describes a general method, called topological prime, to stitch functional groups to a substrate of entropic polymer network. The precursor of a topological primer contains polymers, crosslinkers, and coupl...
详细信息
This paper describes a general method, called topological prime, to stitch functional groups to a substrate of entropic polymer network. The precursor of a topological primer contains polymers, crosslinkers, and coupling agents. When the precursor is applied on the surface of the substrate, the crosslinkers link the primer polymers into a primer network, in topological entanglement with the substrate network, while the coupling agents link the primer network to the functional groups. The use of topological prime is demonstrated by priming a hydrophobic elastomer of an arbitrary shape for hydrophilic coating. We describe an approach that fulfills two fundamental requirements: wetting and adhesion. The coated elastomer maintains hydrophilicity and lubricity after stretch, scratch, swell, and slide. As a further demonstration, a hydrogel substrate is primed for hydrophobic coating. Topological prime opens an enormous space for applications in engineering and biomedicine.
During epithelial wound healing, cell morphology near the healed wound and the healing rate vary strongly among different developmental stages even for a single species like Drosophila. We develop deformable particle ...
详细信息
During epithelial wound healing, cell morphology near the healed wound and the healing rate vary strongly among different developmental stages even for a single species like Drosophila. We develop deformable particle (DP) model simulations to understand how variations in cell mechanics give rise to distinct wound closure phenotypes in the Drosophila embryonic ectoderm and larval wing disc epithelium. We find that plastic deformation of the cell membrane can generate large changes in cell shape consistent with wound closure in the embryonic ectoderm. Our results show that the embryonic ectoderm is best described by cell membranes with an elasto-plastic response, whereas the larval wing disc is best described by cell membranes with an exclusively elastic response. By varying the mechanical response of cell membranes in DP simulations, we recapitulate the wound closure behavior of both the embryonic ectoderm and the larval wing disc.
There is an increased interest in topologically nontrivial magnetic spin textures such as skyrmions and chiral domain-wall solitons, both from a point of fundamental physics understanding as well as potential technolo...
详细信息
There is an increased interest in topologically nontrivial magnetic spin textures such as skyrmions and chiral domain-wall solitons, both from a point of fundamental physics understanding as well as potential technological interest in low-power memory applications. In order to control their behavior, it is necessary to understand their complex spin texture at the nanoscale. Lorentz transmission electron microscopy (LTEM) is a suitable technique for studying these systems due to its high spatial resolution and capability to simultaneously characterize magnetic texture and microstructure. In this work, we present the application of PyLorentz, an open-source software suite that we have developed, for quantitative image analysis of Néel-type skyrmions in thin-film heterostructures. PyLorentz enhances LTEM capabilities by enabling reconstruction of magnetic induction maps from experimental images, as well as simulating LTEM images using micromagnetic simulation data. We demonstrate this for simulated Néel skyrmions as well as experimental data from [Pt/Co/W] multilayer heterostructures. We also show how simulation-assisted LTEM analysis is crucial for understanding these complex magnetic spin textures, in which the reconstructed magnetic induction map (seen in the LTEM images) differs significantly from the magnetization configuration.
The maximally random jammed (MRJ) state is the most random (i.e., disordered) configuration of strictly jammed (mechanically rigid) nonoverlapping objects. MRJ packings are hyperuniform, meaning their long-wavelength ...
详细信息
The maximally random jammed (MRJ) state is the most random (i.e., disordered) configuration of strictly jammed (mechanically rigid) nonoverlapping objects. MRJ packings are hyperuniform, meaning their long-wavelength density fluctuations are anomalously suppressed compared to typical disordered systems, i.e., their structure factors S(k) tend to zero as the wave number |k| tends to zero. Here we show that generating high-quality strictly jammed states for Euclidean space dimensions d=3,4, and 5 is of paramount importance in ensuring hyperuniformity and extracting precise values of the hyperuniformity exponent α>0 for MRJ states, defined by the power-law behavior of S(k)∼|k|α in the limit |k|→0. Moreover, we show that for fixed d it is more difficult to ensure jamming as the particle number N increases, which results in packings that are nonhyperuniform. Free-volume theory arguments suggest that the ideal MRJ state does not contain rattlers, which act as defects in numerically generated packings. As d increases, we find that the fraction of rattlers decreases substantially. Our analysis of the largest truly jammed packings suggests that the ideal MRJ packings for all dimensions d≥3 are hyperuniform with α=d−2, implying the packings become more hyperuniform as d increases. The differences in α between MRJ packings and the recently proposed Manna-class random close packed (RCP) states, which were reported to have α=0.25 in d=3 and be nonhyperuniform (α=0) for d=4 and d=5, demonstrate the vivid distinctions between the large-scale structure of RCP and MRJ states in these dimensions. Our paper clarifies the importance of the link between true jamming and hyperuniformity and motivates the development of an algorithm to produce rattler-free three-dimensional MRJ packings.
暂无评论