咨询与建议

限定检索结果

文献类型

  • 122 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 131 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 93 篇 理学
    • 45 篇 数学
    • 30 篇 生物学
    • 29 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 10 篇 系统科学
    • 5 篇 地球物理学
    • 4 篇 化学
    • 3 篇 天文学
  • 80 篇 工学
    • 36 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 26 篇 生物工程
    • 13 篇 生物医学工程(可授...
    • 9 篇 控制科学与工程
    • 9 篇 核科学与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 化学工程与技术
    • 4 篇 动力工程及工程热...
    • 3 篇 光学工程
    • 3 篇 信息与通信工程
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
  • 18 篇 医学
    • 15 篇 基础医学(可授医学...
    • 15 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 9 篇 gravitational wa...
  • 5 篇 gravitational wa...
  • 4 篇 deep learning
  • 4 篇 gravitational wa...
  • 4 篇 numerical method...
  • 3 篇 partial differen...
  • 3 篇 open source soft...
  • 2 篇 extrapolation
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 computational ne...
  • 2 篇 finance
  • 2 篇 clinical researc...
  • 2 篇 computational bi...
  • 2 篇 congresses
  • 2 篇 errors
  • 2 篇 quantum theory
  • 2 篇 forecasting
  • 2 篇 astrophysical st...
  • 2 篇 boundary value p...

机构

  • 22 篇 graduate group i...
  • 12 篇 department of as...
  • 12 篇 institute for pl...
  • 12 篇 university of so...
  • 12 篇 department of ph...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 scuola di ingegn...
  • 11 篇 advanced technol...
  • 11 篇 physik-institut ...
  • 11 篇 king’s college l...
  • 11 篇 department of ph...
  • 11 篇 kamioka branch n...
  • 11 篇 the university o...
  • 11 篇 infn sezione di ...
  • 11 篇 dipartimento di ...

作者

  • 18 篇 perdikaris paris
  • 14 篇 wang sifan
  • 12 篇 g. moreno
  • 12 篇 r. gray
  • 11 篇 r. takahashi
  • 11 篇 j. c. bayley
  • 11 篇 t. m. evans
  • 11 篇 k. komori
  • 11 篇 t. kajita
  • 11 篇 f. hellman
  • 11 篇 s. eguchi
  • 11 篇 k. ioka
  • 11 篇 m. kinley-hanlon
  • 11 篇 c. frederick
  • 11 篇 e. j. son
  • 11 篇 l. m. daneshgara...
  • 11 篇 t. tsuzuki
  • 11 篇 t. mcrae
  • 11 篇 a. parisi
  • 11 篇 t. sawada

语言

  • 129 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Department of Bioengineering and Graduate Group in Applied Mathematics and Computational Science"
131 条 记 录,以下是41-50 订阅
排序:
COMPOSITE BAYESIAN OPTIMIZATION IN FUNCTION SPACES USING NEON - NEURAL EPISTEMIC OPERATOR NETWORKS
arXiv
收藏 引用
arXiv 2024年
作者: Guilhoto, Leonardo Ferreira Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Operator learning is a rising field of scientific computing where inputs or outputs of a machine learning model are functions defined in infinite-dimensional spaces. In this paper, we introduce NEON (Neural Epistemic ... 详细信息
来源: 评论
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Sifan Wang, Hanwen Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Physics-informed neural networks (PINNs) are demonstrating remarkable promise in integrating physical models with gappy and noisy observational data, but they still struggle in cases where the target functions to be a... 详细信息
来源: 评论
Risk-Aware Stochastic Control of a Sailboat
Risk-Aware Stochastic Control of a Sailboat
收藏 引用
American Control Conference (ACC)
作者: MingYi Wang Natasha Patnaik Anne Somalwar Jingyi Wu Alexander Vladimirsky The Center for Applied Mathematics Cornell University Ithaca NY USA The Department of Computational Applied Mathematics and Operations Research Rice University Houston TX USA The graduate group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia PA USA The Center for Data Science New York University New York City NY USA Department of Mathematics Cornell University Ithaca NY USA
Sailboat path-planning is a natural hybrid control problem (due to continuous steering and occasional “tack-switching” maneuvers), with the actual path-to-target greatly affected by stochastically evolving wind cond... 详细信息
来源: 评论
A subgroup-aware scoring approach to the study of effect modification in observational studies
arXiv
收藏 引用
arXiv 2024年
作者: Fan, Yijun Small, Dylan S. Graduate Group of Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Statistics and Data Science University of Pennsylvania PhiladelphiaPA19104 United States
Effect modification means the size of a treatment effect varies with an observed covariate. Generally speaking, a larger treatment effect with more stable error terms is less sensitive to bias. Thus, we might be able ... 详细信息
来源: 评论
Fast PDE-constrained optimization via self-supervised operator learning: A preprint
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Sifan Bhouri, Mohamed Aziz Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Design and optimal control problems are among the fundamental, ubiquitous tasks we face in science and engineering. In both cases, we aim to represent and optimize an unknown (black-box) function that associates a per... 详细信息
来源: 评论
Real-time Sampling and Estimation on Random Access Channels: Age of Information and Beyond
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Xingran Liao, Xinyu Bidokhti, Shirin Saeedi The Department of Electrical and System Engineering University of Pennsylvania PA19104 United States The Graduate Group of Applied Mathematics and Computational Science University of Pennsylvania PA19104 United States
Next generation multiple access channels require to provision for unprecedented massive user access in a plethora of applications in cyber-physical systems. This work proposes decentralized policies for the real-time ... 详细信息
来源: 评论
Selecting the number of components in PCA via random signflips
arXiv
收藏 引用
arXiv 2020年
作者: Hong, David Sheng, Yue Dobriban, Edgar Department of Electrical and Computer Engineering University of Delaware United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Department of Statistics and Data Science University of Pennsylvania United States
Principal component analysis (PCA) is a foundational tool in modern data analysis, and a crucial step in PCA is selecting the number of components to keep. However, classical selection methods (e.g., scree plots, para... 详细信息
来源: 评论
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Moniri, Behrad Lee, Donghwan Hassani, Hamed Dobriban, Edgar Department of Electrical and Systems Engineering University of Pennsylvania United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Department of Statistics and Data Science University of Pennsylvania United States
Feature learning is thought to be one of the fundamental reasons for the success of deep neural networks. It is rigorously known that in two-layer fully-connected neural networks under certain conditions, one step of ... 详细信息
来源: 评论
Demystifying Disagreement-on-the-Line in High Dimensions
arXiv
收藏 引用
arXiv 2023年
作者: Lee, Donghwan Moniri, Behrad Huang, Xinmeng Dobriban, Edgar Hassani, Hamed Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Department of Electrical and Systems Engineering University of Pennsylvania United States Department of Statistics and Data Science University of Pennsylvania United States
Evaluating the performance of machine learning models under distribution shift is challenging, especially when we only have unlabeled data from the shifted (target) domain, along with labeled data from the original (s... 详细信息
来源: 评论
Collaborative learning of discrete distributions under heterogeneity and communication constraints  22
Collaborative learning of discrete distributions under heter...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Xinmeng Huang Donghwan Lee Edgar Dobriban Hamed Hassani Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia PA Department of Statistics and Data Science University of Pennsylvania Philadelphia PA Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia PA
In modern machine learning, users often have to collaborate to learn distributions that generate the data. Communication can be a significant bottleneck. Prior work has studied homogeneous users—i.e., whose data foll...
来源: 评论