Cigarette smoking is reported to be the major risk factor for endothelial dysfunction. The variations of the spectral compositions of microcirculatory perfusion signal could provide the information related to the regu...
详细信息
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes and molecular mechanisms that are often specific to cell type. Here, to characterize the genetic contribution...
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes and molecular mechanisms that are often specific to cell type. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.
Infections can lead to persistent symptoms and diseases such as shingles after varicella zoster or rheumatic fever after streptococcal infections. Similarly, severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2...
Liquid-phase electron microscopy (LP-EM) is an exciting new area in the materials imaging field, providing unprecedented views of molecular processes. Time-resolved insights from LP-EM studies are a strong complement ...
详细信息
Liquid-phase electron microscopy (LP-EM) is an exciting new area in the materials imaging field, providing unprecedented views of molecular processes. Time-resolved insights from LP-EM studies are a strong complement to the remarkable results achievable with other high-resolution techniques. Here, the opportunities to expand LP-EM technology beyond 2D temporal assessments and into the 3D regime are described. The results show new structures and dynamic insights of human viruses contained in minute volumes of liquid while acquired in a rapid timeframe. To develop this strategy, adeno-associated virus (AAV) is used as a model system. AAV is a well-known gene therapy vehicle with current applications involving drug delivery and vaccine development for COVID-19. Improving the understanding of the physical properties of biological entities in a liquid state, as maintained in the human body, has broad societal implications for human health and disease.
Liquid-electron microscopy (EM), the room temperature correlate to cryo-EM, is an exciting new technique delivering real-time data of dynamic reactions in solution. Here, we explain how liquid-EM gained popularity in ...
Liquid-electron microscopy (EM), the room temperature correlate to cryo-EM, is an exciting new technique delivering real-time data of dynamic reactions in solution. Here, we explain how liquid-EM gained popularity in recent years by examining key experiments conducted on viral assemblies and host-pathogen interactions. We describe developing workflows for specimen preparation, data collection, and computing processes that led to the first high-resolution virus structures in a liquid environment. Equally important, we review why liquid-electron tomography may become the next big thing in biomedical research due to its ability to monitor live viruses entering cells within seconds. Taken together, we pose the idea that liquid-EM can serve as a dynamic complement to current cryo-EM methods, inspiring the "real-time revolution" in nanoscale imaging.
The reproducibility crisis in bioscience, characterized by inconsistent study results, impedes our understanding of biological processes. Global collaborative studies offer a unique solution to this problem. Here, we ...
The reproducibility crisis in bioscience, characterized by inconsistent study results, impedes our understanding of biological processes. Global collaborative studies offer a unique solution to this problem. Here, we present a global collaboration using the zebrafish (Danio rerio) novel tank test, a popular behavioral assay for anxiety-like responses. We analyzed data from 20 laboratories worldwide, focusing on housing conditions and experimental setups. Our study included 488 adult zebrafish, tested for 5 min, focusing on a variety of variables. Key findings show that female zebrafish exhibit more anxiety-like behavior than males, highlighting sex as a critical variable. Housing conditions, including higher stocking densities and specific feed types, also influenced anxiety levels. Optimal conditions (5 fish/L) and nutritionally rich feeds (for example, rotifers) mitigated anxiety-like behaviors. Environmental stressors, such as noise and transportation, significantly impacted behavior. We recommend standardizing testing protocols to account for sex differences, optimal stocking densities, nutritionally rich feeds and minimizing stressors to improve the reliability of zebrafish behavioral studies.
暂无评论