咨询与建议

限定检索结果

文献类型

  • 418 篇 期刊文献
  • 58 篇 会议
  • 1 册 图书

馆藏范围

  • 477 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 368 篇 理学
    • 212 篇 物理学
    • 151 篇 数学
    • 72 篇 化学
    • 64 篇 统计学(可授理学、...
    • 48 篇 生物学
    • 30 篇 系统科学
    • 9 篇 天文学
  • 303 篇 工学
    • 106 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 57 篇 力学(可授工学、理...
    • 54 篇 化学工程与技术
    • 48 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 34 篇 信息与通信工程
    • 33 篇 动力工程及工程热...
    • 32 篇 控制科学与工程
    • 32 篇 生物工程
    • 29 篇 电气工程
    • 25 篇 生物医学工程(可授...
    • 19 篇 机械工程
    • 19 篇 光学工程
    • 12 篇 仪器科学与技术
    • 11 篇 核科学与技术
    • 10 篇 冶金工程
    • 9 篇 航空宇航科学与技...
  • 30 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 11 篇 工商管理
    • 11 篇 图书情报与档案管...
  • 15 篇 医学
    • 12 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 7 篇 法学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 教育学

主题

  • 10 篇 density function...
  • 9 篇 gravitational wa...
  • 8 篇 molecular dynami...
  • 5 篇 machine learning
  • 5 篇 fluid structure ...
  • 5 篇 gravitational wa...
  • 4 篇 dynamical system...
  • 4 篇 deep learning
  • 4 篇 microstructure
  • 4 篇 neural networks
  • 4 篇 first-principles...
  • 4 篇 hydrodynamics
  • 4 篇 diffusion
  • 4 篇 stochastic syste...
  • 4 篇 artificial neura...
  • 4 篇 gravitational wa...
  • 3 篇 noise measuremen...
  • 3 篇 density function...
  • 3 篇 ground state
  • 3 篇 hamiltonians

机构

  • 29 篇 program in appli...
  • 23 篇 program in appli...
  • 18 篇 department of ch...
  • 15 篇 institute for pl...
  • 14 篇 university of so...
  • 14 篇 program in appli...
  • 14 篇 indian institute...
  • 14 篇 carolina center ...
  • 13 篇 université libre...
  • 12 篇 department of as...
  • 12 篇 scuola di ingegn...
  • 12 篇 infn sezione di ...
  • 12 篇 dipartimento di ...
  • 12 篇 università degli...
  • 12 篇 department of ph...
  • 12 篇 infn trento inst...
  • 12 篇 max planck insti...
  • 12 篇 université paris...
  • 12 篇 universiteit gen...
  • 12 篇 gran sasso scien...

作者

  • 16 篇 griffith boyce e...
  • 16 篇 kevrekidis ioann...
  • 16 篇 weinan e.
  • 15 篇 zhang linfeng
  • 13 篇 yue zhao
  • 12 篇 r. takahashi
  • 12 篇 j. c. bayley
  • 12 篇 k. komori
  • 12 篇 t. kajita
  • 12 篇 f. hellman
  • 12 篇 m. kinley-hanlon
  • 12 篇 t. mcrae
  • 12 篇 a. parisi
  • 12 篇 t. sawada
  • 12 篇 s. rowan
  • 12 篇 s. m. aronson
  • 12 篇 v. p. mitrofanov
  • 12 篇 g. moreno
  • 12 篇 g. hemming
  • 12 篇 p. fritschel

语言

  • 451 篇 英文
  • 25 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=Department of Chemical Engineering and Program in Applied and COmputational Mathematics"
477 条 记 录,以下是91-100 订阅
排序:
Unravelling the Mechanics of Knitted Fabrics Through Hierarchical Geometric Representation
arXiv
收藏 引用
arXiv 2023年
作者: Ding, Xiaoxiao Sanchez, Vanessa Bertoldi, Katia Rycroft, Chris H. Harvard John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Department of Mathematics University of Wisconsin–Madison MadisonWI53706 United States Department of Chemical Engineering Stanford University 443 Via Ortega StanfordCA94305 United States Computational Research Division Lawrence Berkeley Laboratory 1 Cyclotron Road BerkeleyCA94720 United States
Knitting interloops one-dimensional yarns into three-dimensional fabrics that exhibit behaviour beyond their constitutive materials. How extensibility and anisotropy emerge from the hierarchical organisation of yarns ... 详细信息
来源: 评论
An analysis of reconstruction noise from undersampled 4D flow MRI
arXiv
收藏 引用
arXiv 2022年
作者: Partin, Lauren Schiavazzi, Daniele E. Long, Carlos A. Sing Department Of Applied And Computational Mathematics And Statistics University Of Notre Dame Notre DameIN United States Institute For Mathematical And Computational Engineering Institute For Biological And Medical Engineering Pontificia Universidad Católica De Chile Santiago Chile ANID - Millennium Science Initiative Program Millennium Nucleus Center For The Discovery Of Structures In Complex Data Chile ANID - Millennium Science Initiative Program Millennium Nucleus Center For Cardiovascular Magnetic Resonance Chile
Novel Magnetic Resonance (MR) imaging modalities can quantify hemodynamics but require long acquisition times, precluding its widespread use for early diagnosis of cardiovascular disease. To reduce the acquisition tim... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
Machine-learning-based non-Newtonian fluid model with molecular fidelity
收藏 引用
Physical Review E 2020年 第4期102卷 043309-043309页
作者: Huan Lei Lei Wu Weinan E Department of Computational Mathematics Science & Engineering and Department of Statistics & Probability Michigan State University East Lansing Michigan 48824 USA Department of Mathematics and Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA
We introduce a machine-learning-based framework for constructing continuum a non-Newtonian fluid dynamics model directly from a microscale description. Dumbbell polymer solutions are used as examples to demonstrate th... 详细信息
来源: 评论
Fabrication and bioactivity studies of wollastonite/polycaprolactone composites
收藏 引用
International Journal of Nano and Biomaterials 2023年 第2期10卷 86-99页
作者: Lakshmi, R. Choudhary, Rajan Senatov, Fedor Kaloshkin, Sergey Kothandam, Shobana Ponnamma, Deepalekshmi Sadasivuni, Kishor Kumar Swamiappan, Sasikumar Department of Chemistry Auxilium College Tamil Nadu Vellore632006 India Faculty of Materials Science and Applied Chemistry Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU Institute of General Chemical Engineering Riga Technical University Pulka St 3 RigaLV-1007 Latvia Baltic Biomaterials Centre of Excellence Headquarters at Riga Technical University Kipsala Street 6A RigaLV-1048 Latvia National University of Science and Technology "MISiS" Moscow119049 Russia Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Tamil Nadu Vellore632014 India Materials Science and Technology Program Department of Mathematics Statistics and Physics College of Arts and Sciences Qatar University P.O. Box 2713 Doha Qatar Center for Advanced Materials Qatar University P.O. Box 2713 Doha Qatar Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Tamil Nadu Vellore632014 India
Current work investigates the influence of wollastonite on mechanical stability and biomineralisation ability of wollastonite/ polycaprolactone (PCL) composites (WP composites). The solvent casting particulate leachin... 详细信息
来源: 评论
Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Dongdong Zhang, Linfeng Wang, Yanze Chang, Junhan Wang, Han Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States DP Technology Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China School of Mathematical Sciences Peking University Beijing China Department of Mathematics Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Beijing Institute of Big Data Research Beijing100871 China
Enhanced sampling methods such as metadynamics and umbrella sampling have become essential tools for exploring the configuration space of molecules and materials. At the same time, they have long faced a number of iss... 详细信息
来源: 评论
Using Diffusion Maps to Analyze Reaction Dynamics for a Hydrogen Combustion Benchmark Dataset
arXiv
收藏 引用
arXiv 2023年
作者: Ko, Taehee Heindel, Joseph Guan, Xingyi Head-Gordon, Teresa Williams-Young, David Yang, Chao Department of Mathematics Penn State University University ParkPA16802 United States Kenneth S. Pitzer Theory Center Department of Chemistry University of California BerkeleyCA94720 United States Departments of Bioengineering and Chemical and Biomolecular Engineering University of California BerkeleyCA94720 United States Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Chemical Sciences Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States
We use local diffusion maps to assess the quality of two types of collective variables (CVs) for a recently published hydrogen combustion benchmark dataset1 that contains ab initio molecular dynamics trajectories and ... 详细信息
来源: 评论
Reliable extrapolation of deep neural operators informed by physics or sparse observations
arXiv
收藏 引用
arXiv 2022年
作者: Zhu, Min Zhang, Handi Jiao, Anran Karniadakis, George Em Lu, Lu Department of Chemical and Biomolecular Engineering University of Pennsylvania PhiladelphiaPA19104 United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Computer and Information Science University of Pennsylvania PhiladelphiaPA19104 United States Division of Applied Mathematics Brown University ProvidenceRI02912 United States School of Engineering Brown University ProvidenceRI02912 United States
Deep neural operators can learn nonlinear mappings between infinite-dimensional function spaces via deep neural networks. As promising surrogate solvers of partial differential equations (PDEs) for real-time predictio... 详细信息
来源: 评论
PPDONet: Deep Operator Networks for Fast Prediction of Steady-State Solutions in Disk-Planet Systems
arXiv
收藏 引用
arXiv 2023年
作者: Mao, Shunyuan Dong, Ruobing Lu, Lu Yi, Kwang Moo Wang, Sifan Perdikaris, Paris Department of Physics and Astronomy University of Victoria VictoriaBCV8P 5C2 Canada Department of Chemical and Biomolecular Engineering University of Pennsylvania PhiladelphiaPA19104 United States Department of Computer Science University of British Columbia VancouverBCV6T 1Z4 Canada Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
We develop a tool, which we name Protoplanetary Disk Operator Network (PPDONet), that can predict the solution of disk-planet interactions in protoplanetary disks in real-time. We base our tool on Deep Operator Networ... 详细信息
来源: 评论
Artificial neural network approach for turbulence models: A local framework
arXiv
收藏 引用
arXiv 2021年
作者: Xie, Chenyue Xiong, Xiangming Wang, Jianchun Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen518055 China
A local artificial neural network (LANN) framework is developed for turbulence modeling. The Reynolds-averaged Navier-Stokes (RANS) unclosed terms are reconstructed by artificial neural network (ANN) based on the loca... 详细信息
来源: 评论