咨询与建议

限定检索结果

文献类型

  • 419 篇 期刊文献
  • 58 篇 会议
  • 1 册 图书

馆藏范围

  • 478 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 368 篇 理学
    • 212 篇 物理学
    • 151 篇 数学
    • 72 篇 化学
    • 64 篇 统计学(可授理学、...
    • 48 篇 生物学
    • 30 篇 系统科学
    • 9 篇 天文学
  • 303 篇 工学
    • 106 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 57 篇 力学(可授工学、理...
    • 54 篇 化学工程与技术
    • 48 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 34 篇 信息与通信工程
    • 33 篇 动力工程及工程热...
    • 32 篇 控制科学与工程
    • 32 篇 生物工程
    • 29 篇 电气工程
    • 25 篇 生物医学工程(可授...
    • 19 篇 机械工程
    • 19 篇 光学工程
    • 12 篇 仪器科学与技术
    • 11 篇 核科学与技术
    • 10 篇 冶金工程
    • 9 篇 航空宇航科学与技...
  • 30 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 11 篇 工商管理
    • 11 篇 图书情报与档案管...
  • 15 篇 医学
    • 12 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 7 篇 法学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 教育学

主题

  • 10 篇 density function...
  • 9 篇 gravitational wa...
  • 8 篇 molecular dynami...
  • 5 篇 machine learning
  • 5 篇 fluid structure ...
  • 5 篇 gravitational wa...
  • 4 篇 dynamical system...
  • 4 篇 deep learning
  • 4 篇 microstructure
  • 4 篇 neural networks
  • 4 篇 first-principles...
  • 4 篇 hydrodynamics
  • 4 篇 diffusion
  • 4 篇 stochastic syste...
  • 4 篇 artificial neura...
  • 4 篇 gravitational wa...
  • 3 篇 noise measuremen...
  • 3 篇 density function...
  • 3 篇 ground state
  • 3 篇 hamiltonians

机构

  • 29 篇 program in appli...
  • 23 篇 program in appli...
  • 18 篇 department of ch...
  • 15 篇 institute for pl...
  • 14 篇 university of so...
  • 14 篇 program in appli...
  • 14 篇 indian institute...
  • 14 篇 carolina center ...
  • 13 篇 université libre...
  • 12 篇 department of as...
  • 12 篇 scuola di ingegn...
  • 12 篇 infn sezione di ...
  • 12 篇 dipartimento di ...
  • 12 篇 università degli...
  • 12 篇 department of ph...
  • 12 篇 infn trento inst...
  • 12 篇 max planck insti...
  • 12 篇 université paris...
  • 12 篇 universiteit gen...
  • 12 篇 gran sasso scien...

作者

  • 16 篇 griffith boyce e...
  • 16 篇 kevrekidis ioann...
  • 16 篇 weinan e.
  • 15 篇 zhang linfeng
  • 13 篇 yue zhao
  • 12 篇 r. takahashi
  • 12 篇 j. c. bayley
  • 12 篇 k. komori
  • 12 篇 t. kajita
  • 12 篇 f. hellman
  • 12 篇 m. kinley-hanlon
  • 12 篇 t. mcrae
  • 12 篇 a. parisi
  • 12 篇 t. sawada
  • 12 篇 s. rowan
  • 12 篇 s. m. aronson
  • 12 篇 v. p. mitrofanov
  • 12 篇 g. moreno
  • 12 篇 g. hemming
  • 12 篇 p. fritschel

语言

  • 452 篇 英文
  • 25 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=Department of Chemical Engineering and Program in Applied and COmputational Mathematics"
478 条 记 录,以下是171-180 订阅
排序:
Simulating Cardiac Fluid Dynamics in the Human Heart
arXiv
收藏 引用
arXiv 2023年
作者: Davey, Marshall Puelz, Charles Rossi, Simone Smith, Margaret Anne Wells, David R. Sturgeon, Gregory M. Segars, W. Paul Vavalle, John P. Peskin, Charles S. Griffith, Boyce E. University of North Carolina Chapel HillNC United States Department of Pediatrics-Cardiology Baylor College of Medicine Texas Children’s Hospital HoustonTX United States Department of Mathematics University North Carolina Chapel HillNC United States Department of Radiology Duke University Medical Center DurhamNC United States Division of Cardiology Department of Medicine University of North Carolina School of Medicine Chapel HillNC United States Courant Institute of Mathematical Sciences New York University New YorkNY United States Departments of Mathematics and Biomedical Engineering University of North Carolina Chapel HillNC United States Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina Chapel HillNC United States Computational Medicine Program University of North Carolina School of Medicine Chapel HillNC United States McAllister Heart Institute University of North Carolina School of Medicine Chapel HillNC United States
Cardiac fluid dynamics fundamentally involves interactions between complex blood flows and the structural deformations of the muscular heart walls and the thin, flexible valve leaflets. There has been longstanding sci... 详细信息
来源: 评论
An optimal algorithm for strict circular seriation
arXiv
收藏 引用
arXiv 2021年
作者: Armstrong, Santiago Guzmán, Cristóbal Long, Carlos A. Sing Institute for Mathematical and Computational Engineering Pontificia Universidad Católica de Chile Santiago Chile Anid - Millennium Science Initiative Program Millennium Nucleus Center for the Discovery of Structures in Complex Data Santiago Chile Department of Applied Mathematics University of Twente Netherlands Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Santiago Chile
We study the problem of circular seriation, where we are given a matrix of pairwise dissimilarities between n objects, and the goal is to find a circular order of the objects in a manner that is consistent with their ... 详细信息
来源: 评论
DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Jinzhe Zhang, Duo Peng, Anyang Zhang, Xiangyu He, Sensen Wang, Yan Liu, Xinzijian Bi, Hangrui Li, Yifan Cai, Chun Zhang, Chengqian Du, Yiming Zhu, Jia-Xin Mo, Pinghui Huang, Zhengtao Zeng, Qiyu Shi, Shaochen Qin, Xuejian Yu, Zhaoxi Luo, Chenxing Ding, Ye Liu, Yun-Pei Shi, Ruosong Wang, Zhenyu Bore, Sigbjørn Løland Chang, Junhan Deng, Zhe Ding, Zhaohan Han, Siyuan Jiang, Wanrun Ke, Guolin Liu, Zhaoqing Lu, Denghui Muraoka, Koki Oliaei, Hananeh Singh, Anurag Kumar Que, Haohui Xu, Weihong Xu, Zhangmancang Zhuang, Yong-Bin Dai, Jiayu Giese, Timothy J. Jia, Weile Xu, Ben York, Darrin M. Zhang, Linfeng Wang, Han School of Artificial Intelligence and Data Science Unversity of Science and Technology of China Hefei China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing China Baidu Inc. Beijing China Department of Computer Science University of Toronto TorontoON Canada Department of Chemistry Princeton University PrincetonNJ08540 United States University of Chinese Academy of Sciences Beijing100871 China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China College of Integrated Circuits Hunan University Changsha410082 China State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Center for Smart Materials and Device Integration School of Material Science and Engineering Wuhan University of Technology Wuhan430070 China College of Science National University of Defense Technology Changsha410073 China Hunan Key Laboratory of Extreme Matter and Applications National University of Defense Technology Changsha410073 China ByteDance Research Beijing100098 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Beijing100875 China Department of Geosciences Princeton University PrincetonNJ08544 United States Department of Applied Physics and Applied Mathematics Columbia University New YorkNY10027 United States IKKEM Fujian Xiamen361005 China Graduate
In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations an... 详细信息
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Jae H. Griffith, Boyce E. Department of Mathematics University of North Carolina Chapel HillNC United States Department of Mechanical Engineering Johns Hopkins University BaltimoreMD United States Institute for Computational Medicine Johns Hopkins University BaltimoreMD United States Departments of Mathematics Applied Physical Sciences and Biomedical Engineering University of North Carolina Chapel HillNC United States Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina Chapel HillNC United States Computational Medicine Program University of North Carolina School of Medicine Chapel HillNC United States McAllister Heart Institute University of North Carolina School of Medicine Chapel HillNC United States
The immersed boundary (IB) method is a non-body conforming approach to fluid-structure interaction (FSI) that uses an Eulerian description of the momentum, viscosity, and incompressibility of a coupled fluid-structure... 详细信息
来源: 评论
A Nodal Immersed Finite Element-Finite Difference Method
arXiv
收藏 引用
arXiv 2021年
作者: Wells, David R. Vadala-Roth, Ben Lee, Jae H. Griffith, Boyce E. Department of Mathematics University of North Carolina Chapel HillNC United States Westborough MA United States Department of Mechanical Engineering Institute for Computational Medicine Johns Hopkins University BaltimoreMD United States Department of Mathematics Applied Physical Sciences and Biomedical Engineering University of North Carolina Chapel HillNC United States Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina Chapel HillNC United States Computational Medicine Program University of North Carolina Chapel HillNC United States McAllister Heart Institute University of North Carolina Chapel HillNC United States Center for Drug Evaluation and Research U.S. Food and Drug Administration Silver SpringMD United States
The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. The IFED method uses a finite element (FE) method to approxim... 详细信息
来源: 评论
A hybrid semi-Lagrangian cut cell method for advection-diffusion problems with robin boundary conditions in moving domains
arXiv
收藏 引用
arXiv 2021年
作者: Barrett, Aaron Fogelson, Aaron L. Griffith, Boyce E. Department of Mathematics University of Utah Salt Lake CityUT United States Departments of Mathematics and Bioengineering University of Utah Salt Lake CityUT United States Departments of Mathematics Applied Physical Sciences and Biomedical Engineering University of North Carolina Chapel HillNC United States Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina Chapel HillNC United States Computational Medicine Program University of North Carolina Chapel HillNC United States McAllister Heart Institute University of North Carolina Chapel HillNC United States
We present a new discretization approach to advection-diffusion problems with Robin boundary conditions on complex, time-dependent domains. The method is based on second order cut cell finite volume methods introduced... 详细信息
来源: 评论
Differential gene expression in trabecular bone osteocytes is related to the local strain and strain gradient
收藏 引用
Scientific reports 2025年 第1期15卷 18501页
作者: Meghana Machireddy Sarah Nano Lucas Debiase Jonathan Lewis Sara Cole Jun Li Glen L Niebur University of Notre Dame Bioengineering Graduate Program Notre Dame IN USA. Department of Aerospace and Mechanical Engineering Notre Dame IN USA. Notre Dame Integrated Imaging Facility Notre Dame IN USA. Department of Applied and Computational Mathematics and Statistics University of Notre Dame Notre Dame IN USA. University of Notre Dame Bioengineering Graduate Program Notre Dame IN USA. gniebur@nd.edu. Department of Aerospace and Mechanical Engineering Notre Dame IN USA. gniebur@nd.edu.
Osteocytes regulate the response of osteoclasts and osteoblasts to mechanical loading through signaling molecules, the levels of which are controlled by post-translational modification or degradation and by differenti...
来源: 评论
computational Methods for Single-Particle Cryo-EM
arXiv
收藏 引用
arXiv 2020年
作者: Singer, Amit Sigworth, Fred J. Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Departments of Cellular and Molecular Physiology Biomedical Engineering and Molecular Biophysics and Biochemistry Yale University New HavenCT06520 United States
Single-particle electron cryomicroscopy (cryo-EM) is an increasingly popular technique for elucidating the three-dimensional structure of proteins and other biologically significant complexes at near-atomic resolution... 详细信息
来源: 评论
β-decay feeding intensity distribution of Mn64
收藏 引用
Physical Review C 2024年 第4期109卷 044312-044312页
作者: W. W. von Seeger P. A. DeYoung A. Spyrou S. Karampagia E. F. Brown S. Ahn B. P. Crider A. C. Dombos G. W. Hitt C. Langer R. Lewis S. N. Liddick S. Lyons Z. Meisel F. Montes F. Naqvi W.-J. Ong C. F. Persch J. Pereira H. Schatz K. Schmidt Department of Physics Hope College Holland Michigan 49423 USA Department of Physics and Astronomy Michigan State University East Lansing Michigan 48824 USA Facility for Rare Isotope Beams Michigan State University East Lansing Michigan 48824 USA Joint Institute for Nuclear Astrophysics–Center for the Evolution of the Elements Michigan State University East Lansing Michigan 48824 USA Grand Valley State University Allendale Michigan 49401 USA Department of Computational Mathematics Science and Engineering Michigan State University East Lansing Michigan 48824 USA Cyclotron Institute Texas A&M University College Station Texas 77843 USA Center for Exotic Nuclear Studies Institute for Basic Science Daejon 34126 South Korea Department of Physics and Astronomy Mississippi State University Mississippi State Mississippi 39762 USA Department of Physics and Engineering Science Coastal Carolina University Conway South Carolina 29528 USA University of Applied Sciences Aachen 52066 Aachen Germany Department of Chemistry Michigan State University East Lansing Michigan 48824 USA Department of Physics and Astronomy Ohio University Athens Ohio 45701 USA Department of Nuclear Engineering Texas A&M University College Station Texas 77840 USA Nuclear and Chemical Sciences Division Lawrence Livermore National Laboratory Livermore California 94550 USA Institute of Radiation Physics Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstrasse 400 01328 Dresden Germany
Nuclei around the N=40 “island of inversion” exhibit interesting structure features that have been the focus of several experimental and theoretical studies. The present work presents the first complete study of the... 详细信息
来源: 评论