We present a multiscale modeling approach that can simulate multimillion atoms effectively via density-functional theory. The method is based on the framework of the quasicontinuum (QC) approach with orbital-free dens...
We present a multiscale modeling approach that can simulate multimillion atoms effectively via density-functional theory. The method is based on the framework of the quasicontinuum (QC) approach with orbital-free density-functional theory (OFDFT) as its sole energetics formulation. The local QC part is formulated by the Cauchy-Born hypothesis with OFDFT calculations for strain energy and stress. The nonlocal QC part is treated by an OFDFT-based embedding approach, which couples OFDFT nonlocal atoms to local region atoms. The method—QCDFT—is applied to a nanoindentation study of an Al thin film, and the results are compared to a conventional QC approach. The results suggest that QCDFT represents a new direction for the quantum simulation of materials at length scales that are relevant to experiments.
We consider a basic model for two-hop transmissions of two information flows which interfere with each other. In this model, two sources simultaneously transmit to two relays (in the first hop), which then simultaneou...
详细信息
We consider a basic model for two-hop transmissions of two information flows which interfere with each other. In this model, two sources simultaneously transmit to two relays (in the first hop), which then simultaneously transmit to two destinations (in the second hop). While the transmission during the first hop is essentially the transmission over a classical interference channel, the transmission in the second hop enjoys an interesting advantage. Specifically, as a byproduct of the Han-Kobayashi transmission scheme applied to the first hop, each of the relays (in the second hop) has access to some of the data that is intended to the other destination, in addition to its own data. As recently observed by Simeone et al., this opens the door to cooperation between the relays. In this paper, we observe that the cooperation can take the form of distributed MIMO broadcast, thus greatly enhancing its effectiveness at high SNR. However, since each relay is only aware of part of the data beyond its own, full cooperation is not possible. We propose several approaches that combine MIMO broadcast strategies (including ldquodirty paperrdquo) with standard non-cooperative strategies for the interference channel. Numerical results are provided, which indicate that our approaches provide substantial benefits at high SNR.
Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by |x1|2p+|x2|2...
详细信息
Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by |x1|2p+|x2|2p≤1 and thus contain a large family of both convex (p≥0.5) and concave (0
We use an “equation-free,” coarse-grained computational approach to accelerate molecular dynamics-based computations of demixing (segregation) of dissimilar particles subject to an upward gas flow (gas-fluidized bed...
详细信息
We use an “equation-free,” coarse-grained computational approach to accelerate molecular dynamics-based computations of demixing (segregation) of dissimilar particles subject to an upward gas flow (gas-fluidized beds). We explore the coarse-grained dynamics of these phenomena in gently fluidized beds of solid mixtures of different densities, typically a slow process for which reasonable continuum models are currently unavailable.
Conventional density functional theory (DFT) fails for materials with strongly correlated electrons, such as late transition metal oxides. Large errors in the intra-atomic Coulomb and exchange interactions are the sou...
详细信息
Conventional density functional theory (DFT) fails for materials with strongly correlated electrons, such as late transition metal oxides. Large errors in the intra-atomic Coulomb and exchange interactions are the source of this failure. The DFT+U method has provided a means, through empirical parameters, to correct these errors. Here, we present a systematic ab initio approach in evaluating the intra-atomic Coulomb and exchange terms, U and J, respectively, in order to make the DFT+U method a fully first-principles technique. The method is based on a relationship between these terms and the Coulomb and exchange integrals evaluated in the basis of unrestricted Hartree-Fock molecular orbitals that represent localized states of the extended system. We used this ab initio scheme to evaluate U and J for chromia (Cr2O3). The resulting values are somewhat higher than those determined earlier either empirically or in constrained DFT calculations but have the advantage of originating from an ab initio theory containing exact exchange. Subsequent DFT+U calculations on chromia using the ab initio derived U and J yield properties consistent with experiment, unlike conventional DFT. Overall, the technique developed and tested in this work holds promise in enabling accurate and fully predictive DFT+U calculations of strongly correlated electron materials.
We describe a computational framework linking uncertainty quantification (UQ) methods for continuum problems depending on random parameters with equation-free (EF) methods for performing continuum deterministic numeri...
详细信息
The temperature control of the heterogeneous alkylation, where H 2SO4 is used as catalyst, is discussed in this paper. The problem is to design a control function to stabilize temperature in face of uncertain kinetic ...
详细信息
A description of the so called "particles with coupled oscillator dynamics" (PCOD) is presented which is used to model, analyze and synthesize collective motion. An oscillator model with spatial dynamics is ...
详细信息
A description of the so called "particles with coupled oscillator dynamics" (PCOD) is presented which is used to model, analyze and synthesize collective motion. An oscillator model with spatial dynamics is presented to help describe how to design steering control laws while it is being used to study biological collectives. Lastly, both engineering and biological analysis were described.
Using a coarse molecular-dynamics (CMD) approach with an appropriate choice of coarse variable (order parameter), we map the underlying effective free-energy landscape for the melting of a crystalline solid. Implement...
Using a coarse molecular-dynamics (CMD) approach with an appropriate choice of coarse variable (order parameter), we map the underlying effective free-energy landscape for the melting of a crystalline solid. Implementation of this approach provides a means for constructing effective free-energy landscapes of structural transitions in condensed matter. The predictions of the approach for the thermodynamic melting point of a model silicon system are in excellent agreement with those of “traditional” techniques for melting-point calculations, as well as with literature values.
We present an equation-free computational approach to the study of the coarse-grained dynamics of finite assemblies of nonidentical coupled oscillators at and near full synchronization. We use coarse-grained observabl...
详细信息
We present an equation-free computational approach to the study of the coarse-grained dynamics of finite assemblies of nonidentical coupled oscillators at and near full synchronization. We use coarse-grained observables which account for the (rapidly developing) correlations between phase angles and natural frequencies. Exploiting short bursts of appropriately initialized detailed simulations, we circumvent the derivation of closures for the long-term dynamics of the assembly statistics.
暂无评论