咨询与建议

限定检索结果

文献类型

  • 419 篇 期刊文献
  • 58 篇 会议
  • 1 册 图书

馆藏范围

  • 478 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 368 篇 理学
    • 212 篇 物理学
    • 151 篇 数学
    • 72 篇 化学
    • 64 篇 统计学(可授理学、...
    • 48 篇 生物学
    • 30 篇 系统科学
    • 9 篇 天文学
  • 303 篇 工学
    • 106 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 57 篇 力学(可授工学、理...
    • 54 篇 化学工程与技术
    • 48 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 34 篇 信息与通信工程
    • 33 篇 动力工程及工程热...
    • 32 篇 控制科学与工程
    • 32 篇 生物工程
    • 29 篇 电气工程
    • 25 篇 生物医学工程(可授...
    • 19 篇 机械工程
    • 19 篇 光学工程
    • 12 篇 仪器科学与技术
    • 11 篇 核科学与技术
    • 10 篇 冶金工程
    • 9 篇 航空宇航科学与技...
  • 30 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 11 篇 工商管理
    • 11 篇 图书情报与档案管...
  • 15 篇 医学
    • 12 篇 基础医学(可授医学...
    • 9 篇 临床医学
  • 7 篇 法学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 教育学

主题

  • 10 篇 density function...
  • 9 篇 gravitational wa...
  • 8 篇 molecular dynami...
  • 5 篇 machine learning
  • 5 篇 fluid structure ...
  • 5 篇 gravitational wa...
  • 4 篇 dynamical system...
  • 4 篇 deep learning
  • 4 篇 microstructure
  • 4 篇 neural networks
  • 4 篇 first-principles...
  • 4 篇 hydrodynamics
  • 4 篇 diffusion
  • 4 篇 stochastic syste...
  • 4 篇 artificial neura...
  • 4 篇 gravitational wa...
  • 3 篇 noise measuremen...
  • 3 篇 density function...
  • 3 篇 ground state
  • 3 篇 hamiltonians

机构

  • 29 篇 program in appli...
  • 23 篇 program in appli...
  • 18 篇 department of ch...
  • 15 篇 institute for pl...
  • 14 篇 university of so...
  • 14 篇 program in appli...
  • 14 篇 indian institute...
  • 14 篇 carolina center ...
  • 13 篇 université libre...
  • 12 篇 department of as...
  • 12 篇 scuola di ingegn...
  • 12 篇 infn sezione di ...
  • 12 篇 dipartimento di ...
  • 12 篇 università degli...
  • 12 篇 department of ph...
  • 12 篇 infn trento inst...
  • 12 篇 max planck insti...
  • 12 篇 université paris...
  • 12 篇 universiteit gen...
  • 12 篇 gran sasso scien...

作者

  • 16 篇 griffith boyce e...
  • 16 篇 kevrekidis ioann...
  • 16 篇 weinan e.
  • 15 篇 zhang linfeng
  • 13 篇 yue zhao
  • 12 篇 r. takahashi
  • 12 篇 j. c. bayley
  • 12 篇 k. komori
  • 12 篇 t. kajita
  • 12 篇 f. hellman
  • 12 篇 m. kinley-hanlon
  • 12 篇 t. mcrae
  • 12 篇 a. parisi
  • 12 篇 t. sawada
  • 12 篇 s. rowan
  • 12 篇 s. m. aronson
  • 12 篇 v. p. mitrofanov
  • 12 篇 g. moreno
  • 12 篇 g. hemming
  • 12 篇 p. fritschel

语言

  • 452 篇 英文
  • 25 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=Department of Chemical Engineering and Program in Applied and COmputational Mathematics"
478 条 记 录,以下是71-80 订阅
排序:
Diverse Manifestations of Electron-Phonon Coupling in a Kagome Superconductor
arXiv
收藏 引用
arXiv 2024年
作者: You, Jing-Yang Hsu, Chih-En Ben, Mauro Del Li, Zhenglu Mork Family Department of Chemical Engineering and Materials Science University of Southern California Los AngelesCA90089 United States Department of Physics National University of Singapore 2 Science Drive 3 Singapore117551 Singapore Department of Physics Tamkang University Tamsui New Taipei251301 Taiwan Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States
Recent angle-resolved photoemission spectroscopy (ARPES) experiments on a kagome metal CsV3Sb5 revealed distinct multimodal dispersion kinks and nodeless superconducting gaps across multiple electron bands. The promin... 详细信息
来源: 评论
Beyond potential energy surface benchmarking: a complete application of machine learning to chemical reactivity
arXiv
收藏 引用
arXiv 2023年
作者: Guan, Xingyi Heindel, Joseph Ko, Taehee Yang, Chao Head-Gordon, Teresa Kenneth S. Pitzer Theory Center Department of Chemistry Departments of Bioengineering and Chemical and Biomolecular Engineering University of California BerkeleyCA94720 United States Chemical Sciences Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Department of Mathematics Penn State University University ParkPA16802 United States Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory United States
We train an equivariant machine learning model to predict energies and forces for a real-world study of hydrogen combustion under conditions of finite temperature and pressure. This challenging case for reactive chemi... 详细信息
来源: 评论
Artificial neural network approach for turbulence models: A local framework
收藏 引用
Physical Review Fluids 2021年 第8期6卷 084612-084612页
作者: Chenyue Xie Xiangming Xiong Jianchun Wang Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen 518055 People's Republic of China
A local artificial neural network (LANN) framework is developed for turbulence modeling. The Reynolds-averaged Navier-Stokes (RANS) unclosed terms are reconstructed by the artificial neural network based on the local ... 详细信息
来源: 评论
Foundation Models for Atomistic Simulation of Chemistry and Materials
arXiv
收藏 引用
arXiv 2025年
作者: Yuan, Eric C.-Y. Liu, Yunsheng Chen, Junmin Zhong, Peichen Raja, Sanjeev Kreiman, Tobias Vargas, Santiago Xu, Wenbin Head-Gordon, Martin Yang, Chao Blau, Samuel M. Cheng, Bingqing Krishnapriyan, Aditi Head-Gordon, Teresa Kenneth S. Pitzer Theory Center Department of Chemistry United States Department of Chemical and Biomolecular Engineering United States Electrical Engineering and Computer Science United States Bakar Institute of Digital Materials for the Planet University of California BerkeleyCA94720 United States Chemical Sciences Division United States Applied Mathematics and Computational Research Division United States Energy Technologies Area United States National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory BerkeleyCA94720 United States
Given the power of large language and large vision models, it is of profound and fundamental interest to ask if a foundational model based on data and parameter scaling laws and pre-training strategies is possible for...
来源: 评论
General framework for the mechanical response of metallic glasses during strain-rate-dependent uniaxial compression
收藏 引用
Physical Review Materials 2023年 第10期7卷 105604-105604页
作者: Weiwei Jin Amit Datye Udo D. Schwarz Mark D. Shattuck Corey S. O'Hern Department of Mechanical Engineering and Materials Science Yale University New Haven Connecticut 06520 USA Department of Chemical and Environmental Engineering Yale University New Haven Connecticut 06520 USA Benjamin Levich Institute and Physics Department The City College of New York New York New York 10031 USA Department of Physics Yale University New Haven Connecticut 06520 USA Department of Applied Physics Yale University New Haven Connecticut 06520 USA Graduate Program in Computational Biology and Bioinformatics Yale University New Haven Connecticut 06520 USA
Experimental data on compressive strength σmax versus strain rate ɛ̇eng for metallic glasses undergoing uniaxial compression show varying strain rate sensitivity. For some metallic glasses, σmax decreases with incre... 详细信息
来源: 评论
High-speed and low-power molecular dynamics processing unit(MDPU)with ab initio accuracy
收藏 引用
npj computational Materials 2024年 第1期10卷 559-568页
作者: Pinghui Mo Yujia Zhang Zhuoying Zhao Hanhan Sun Junhua Li Dawei Guan Xi Ding Xin Zhang Bo Chen Mengchao Shi Duo Zhang Denghui Lu Yinan Wang Jianxing Huang Fei Liu Xinyu Li Mohan Chen Jun Cheng Bin Liang Weinan E Jiayu Dai Linfeng Zhang Han Wang Jie Liu College of Integrated Circuits Hunan UniversityChangsha410082P.R.China College of Electrical and Information Engineering Hunan UniversityChangsha410082P.R.China College of Computer National University of Defense TechnologyChangsha410073P.R.China Department of Physics National University of Defense TechnologyChangsha410073P.R.China DP Technology 100080 BeijingP.R.China AI for Science Institute 100080 BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking University100871 BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking University100871 BeijingP.R.China School of Mathematical Science Peking University100871 BeijingP.R.China State Key Laboratory of Physical Chemistry of Solid Surfaces iChEMCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P.R.China School of Integrated Circuits Peking University100871 BeijingP.R.China Center for Machine Learning Research Peking University100871 BeijingP.R.China Institute of Applied Physics and Computational Mathematics 100088 BeijingP.R.China Greater Bay Area Institute for Innovation Hunan UniversityGuangzhou511300P.R.China Department of Electrical and Computer Engineering University of WashingtonSeattleWA98195USA
Molecular dynamics(MD)is an indispensable atomistic-scale computational tool widely-used in various *** the past decades,nearly all ab initio MD and machine-learning MD have been based on the general-purpose central/g... 详细信息
来源: 评论
Antithetic Multilevel Methods for Elliptic and Hypo-Elliptic Diffusions with Applications
arXiv
收藏 引用
arXiv 2024年
作者: Iguchi, Yuga Jasra, Ajay Maama, Mohamed Beskos, Alexandros Department of Statistical Science University College London LondonWC1E 6BT United Kingdom School of Data Science The Chinese University of Hong Kong Shenzhen China Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
In this paper we present a new antithetic multilevel Monte Carlo (MLMC) method for the estimation of expectations with respect to laws of diffusion processes that can be elliptic or hypo-elliptic. In particular, we co... 详细信息
来源: 评论
Rapid quantum ground state preparation via dissipative dynamics
arXiv
收藏 引用
arXiv 2025年
作者: Zhan, Yongtao Ding, Zhiyan Huhn, Jakob Gray, Johnnie Preskill, John Chan, Garnet Kin-Lic Lin, Lin Institute for Quantum Information and Matter California Institute of Technology United States Division of Physics Mathematics and Astronomy California Institute of Technology United States Department of Mathematics University of California Berkeley United States Department of Physics Arnold Sommerfeld Center for Theoretical Physics Ludwig-Maximilians-Universität München Germany Division of Chemistry and Chemical Engineering California Institute of Technology United States Department of Physics California Institute of Technology United States AWS Center for Quantum Computing United States Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory United States
Inspired by natural cooling processes, dissipation has become a promising approach for preparing low-energy states of quantum systems. However, the potential of dissipative protocols remains unclear beyond certain com... 详细信息
来源: 评论
Sequential Markov Chain Monte Carlo for Lagrangian Data Assimilation with Applications to Unknown Data Locations
arXiv
收藏 引用
arXiv 2023年
作者: Ruzayqat, Hamza Beskos, Alexandros Crisan, Dan Jasra, Ajay Kantas, Nikolas Applied Mathematics and Computational Science Program Computer Electrical and Mathematical Sciences and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia Department of Statistical Science University College London LondonWC1E 6BT United Kingdom Department of Mathematics Imperial College London LondonSW7 2AZ United Kingdom
We consider a class of high-dimensional spatial filtering problems, where the spatial locations of observations are unknown and driven by the partially observed hidden signal. This problem is exceptionally challenging... 详细信息
来源: 评论
DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenfei Ou, Qi Chen, Yixiao Cao, Yu Liu, Renxi Zhang, Chunyi Zheng, Daye Cai, Chun Wu, Xifan Wang, Han Chen, Mohan Zhang, Linfeng AI for Science Institute Beijing100080 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States HEDPS CAPT College of Engineering School of Physics Peking University Beijing100871 China Department of Physics Temple University PhiladelphiaPA19122 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China DP Technology Beijing100080 China
Recently, the development of machine learning (ML) potentials has made it possible to perform large-scale and long-time molecular simulations with the accuracy of quantum mechanical (QM) models. However, for high-leve... 详细信息
来源: 评论