咨询与建议

限定检索结果

文献类型

  • 420 篇 期刊文献
  • 58 篇 会议
  • 1 册 图书

馆藏范围

  • 479 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 369 篇 理学
    • 212 篇 物理学
    • 152 篇 数学
    • 72 篇 化学
    • 64 篇 统计学(可授理学、...
    • 48 篇 生物学
    • 30 篇 系统科学
    • 10 篇 天文学
    • 9 篇 地球物理学
  • 306 篇 工学
    • 107 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 58 篇 力学(可授工学、理...
    • 54 篇 化学工程与技术
    • 48 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 34 篇 信息与通信工程
    • 33 篇 动力工程及工程热...
    • 32 篇 控制科学与工程
    • 32 篇 生物工程
    • 29 篇 电气工程
    • 25 篇 生物医学工程(可授...
    • 19 篇 机械工程
    • 19 篇 光学工程
    • 12 篇 仪器科学与技术
    • 11 篇 核科学与技术
    • 10 篇 冶金工程
    • 10 篇 航空宇航科学与技...
  • 30 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 11 篇 工商管理
    • 11 篇 图书情报与档案管...
  • 15 篇 医学
    • 12 篇 基础医学(可授医学...
  • 7 篇 法学
  • 7 篇 农学
  • 3 篇 经济学
  • 3 篇 教育学

主题

  • 10 篇 density function...
  • 9 篇 gravitational wa...
  • 8 篇 molecular dynami...
  • 5 篇 machine learning
  • 5 篇 fluid structure ...
  • 5 篇 gravitational wa...
  • 4 篇 dynamical system...
  • 4 篇 deep learning
  • 4 篇 microstructure
  • 4 篇 neural networks
  • 4 篇 first-principles...
  • 4 篇 hydrodynamics
  • 4 篇 diffusion
  • 4 篇 stochastic syste...
  • 4 篇 artificial neura...
  • 4 篇 dynamics
  • 4 篇 gravitational wa...
  • 3 篇 noise measuremen...
  • 3 篇 density function...
  • 3 篇 ground state

机构

  • 30 篇 program in appli...
  • 23 篇 program in appli...
  • 18 篇 department of ch...
  • 15 篇 carolina center ...
  • 14 篇 institute for pl...
  • 14 篇 university of so...
  • 14 篇 program in appli...
  • 13 篇 department of as...
  • 13 篇 indian institute...
  • 13 篇 department of ch...
  • 12 篇 department of ph...
  • 12 篇 université libre...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 scuola di ingegn...
  • 11 篇 advanced technol...

作者

  • 17 篇 griffith boyce e...
  • 16 篇 zhang linfeng
  • 16 篇 kevrekidis ioann...
  • 16 篇 weinan e.
  • 12 篇 yue zhao
  • 12 篇 salvatore torqua...
  • 12 篇 emily a. carter
  • 12 篇 wang han
  • 11 篇 r. takahashi
  • 11 篇 j. c. bayley
  • 11 篇 t. m. evans
  • 11 篇 k. komori
  • 11 篇 t. kajita
  • 11 篇 f. hellman
  • 11 篇 s. eguchi
  • 11 篇 k. ioka
  • 11 篇 m. kinley-hanlon
  • 11 篇 c. frederick
  • 11 篇 e. j. son
  • 11 篇 l. m. daneshgara...

语言

  • 445 篇 英文
  • 33 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=Department of Chemical Engineering and Program in Applied and Computational Mathematics"
479 条 记 录,以下是161-170 订阅
排序:
Modeling liquid water by climbing up Jacob’s ladder in density functional theory facilitated by using deep neural network potentials
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Chunyi Tang, Fujie Chen, Mohan Zhang, Linfeng Qiu, Diana Y. Perdew, John P. Klein, Michael L. Wu, Xifan Department of Physics Temple University PhiladelphiaPA19122 United States HEDPS Center for Applied Physics and Technology College of Engineering Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Mechanical Engineering and Materials Science Yale University New HavenCT06520 United States Department of Chemistry Temple University PhiladelphiaPA19122 United States Institute for Computational Molecular Science Temple University PhiladelphiaPA19122 United States
Within the framework of Kohn-Sham density functional theory (DFT), the ability to provide good predictions of water properties by employing a strongly constrained and appropriately normed (SCAN) functional has been ex... 详细信息
来源: 评论
Deep Potential generation scheme and simulation protocol for the Li10GeP2S12-type superionic conductors
arXiv
收藏 引用
arXiv 2020年
作者: Huang, Jianxing Zhang, Linfeng Wang, Han Zhao, Jinbao Cheng, Jun Weinan, E. State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen361005 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China Department of Mathematics Princeton University PrincetonNJ08544 United States
Solid-state electrolyte materials with superior lithium ionic conductivities are vital to the next-generation Li-ion batteries. Molecular dynamics could provide atomic scale information to understand the diffusion pro... 详细信息
来源: 评论
Image Recovery from Rotational And Translational Invariants
Image Recovery from Rotational And Translational Invariants
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Nicholas F. Marshall Ti-Yen Lan Tamir Bendory Amit Singer Department of Mathematics Princeton University Princeton NJ USA The Program in Applied and Computational Mathematics Princeton University Princeton NJ USA School of Electrical Engineering Tel Aviv University Tel Aviv Israel
We introduce a framework for recovering an image from its rotationally and translationally invariant features based on autocorrelation analysis. This work is an instance of the multi-target detection statistical model...
来源: 评论
Phase equilibrium of water with hexagonal and cubic ice using the SCAN functional
arXiv
收藏 引用
arXiv 2021年
作者: Piaggi, Pablo Miguel Panagiotopoulos, Athanassios Z. Debenedetti, Pablo G. Car, Roberto Department of Chemistry Princeton University PrincetonNJ08544 United States Department of Chemical and Biological Engineering Princeton University PrincetonNJ08544 United States Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States Department of Physics Princeton University PrincetonNJ08544 United States Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States
Machine learning models are rapidly becoming widely used to simulate complex physicochemical phenomena with ab initio accuracy. Here, we use one such model as well as direct density functional theory (DFT) calculation... 详细信息
来源: 评论
Universal mechanical response of metallic glasses during strain-rate-dependent uniaxial compression
arXiv
收藏 引用
arXiv 2022年
作者: Jin, Weiwei Datye, Amit Schwarz, Udo D. Shattuck, Mark D. O'Hern, Corey S. Department of Mechanical Engineering and Materials Science Yale University New HavenCT06520 United States Department of Chemical and Environmental Engineering Yale University New HavenCT06520 United States Benjamin Levich Institute Physics Department The City College of New York New YorkNY10031 United States Department of Physics Yale University New HavenCT06520 United States Department of Applied Physics Yale University New HavenCT06520 United States Graduate Program in Computational Biology and Bioinformatics Yale University New HavenCT06520 United States
Experimental data on the compressive strength σmax versus strain rate Ε eng for metallic glasses undergoing uniaxial compression shows significantly different behavior for different alloys. For some metallic glasse... 详细信息
来源: 评论
DeePMD-kit v2: A software package for Deep Potential models
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li'ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E.A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. Weinan, E. Car, Roberto Zhang, Linfeng Wang, Han Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China College of Electrical and Information Engineering Hunan University Changsha China Yuanpei College Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Department of Experimental Physics Comenius University Mlynská Dolina F2 Bratislava842 48 Slovakia Center for Quantum Information Institute for Interdisciplinary Information Sciences Tsinghua University Beijing100084 China Center for Data Science Peking University Beijing100871 China ByteDance Research Zhonghang Plaza No. 43 North 3rd Ring West Road Haidian District Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Baidu Inc. Beijing China Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University Zhejiang Hangzhou China Westlake AI Therapeutics Lab Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Hangzhou China Department of Chemistry Princeton University PrincetonNJ08544 United States SISSA Scuola Internazionale Superiore di Studi Avanzati Trieste34136 Italy Laboratory of Computational Science and Modeling Institute of Materials École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland Department of Physics National University of Defense Technology Hunan Changsha410073 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China School of Electronics Engineerin
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 20... 详细信息
来源: 评论
Isotope effects in molecular structures and electronic properties of liquid water via deep potential molecular dynamics based on the SCAN functional
收藏 引用
Physical Review B 2020年 第21期102卷 214113-214113页
作者: Jianhang Xu Chunyi Zhang Linfeng Zhang Mohan Chen Biswajit Santra Xifan Wu Department of Physics Temple University Philadelphia Pennsylvania 19122 USA Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA CAPT HEDPS College of Engineering Peking University Beijing 100871 China Institute for Computational Molecular Science Temple University Philadelphia Pennsylvania 19122 USA
Feynman path-integral deep potential molecular dynamics (PI-DPMD) calculations have been employed to study both light (H2O) and heavy water (D2O) within the isothermalisobaric ensemble. In particular, the deep neural ... 详细信息
来源: 评论
Nuclear Neural Networks: Emulating Late Burning Stages in Core Collapse Supernova Progenitors
arXiv
收藏 引用
arXiv 2025年
作者: Grichener, Aldana Renzo, Mathieu Kerzendorf, Wolfgang E. Farmer, Rob de Mink, Selma E. Bellinger, Earl Patrick Chan, Chi-Kwan Chen, Nutan Farag, Ebraheem Justham, Stephen Steward Steward Observatory Department of Astronomy University of Arizona 933 North Cherry Avenue TucsonAZ85721 United States Max Planck Institute for Astrophysics Karl-Schwarzschild-Str. 1 Garching85748 Germany Department of Physics Technion Haifa3200003 Israel Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI48824 United States Department of Physics and Astronomy Michigan State University East LansingMI48824 United States Ludwig-Maximilians-Universitat Munchen Geschwister-Scholl-Platz 1 Munchen80539 Germany Department of Astronomy Yale University New HavenCT06511 United States Steward Observatory Department of Astronomy University of Arizona 933 North Cherry Avenue TucsonAZ85721 United States Data Science Institute University of Arizona 1230 N. Cherry Avenue TucsonAZ85721 United States Program in Applied Mathematics University of Arizona 617 North Santa Rita TucsonAZ85721 United States Machine Learning Research Lab Volkswagen AG Munich38440 Germany
One of the main challenges in modeling massive stars to the onset of core collapse is the computational bottleneck of nucleosynthesis during advanced burning stages. The number of isotopes formed requires solving a la... 详细信息
来源: 评论
DeePN2: A deep learning-based non-Newtonian hydrodynamic model
arXiv
收藏 引用
arXiv 2021年
作者: Fang, Lidong Ge, Pei Zhang, Lei Weinan, E. Lei, Huan Department of Computational Mathematics Science and Engineering Michigan State University MI48824 United States School of Mathematical Sciences Institute of Natural Sciences and MOE-LSC Shanghai Jiao Tong University 800 Dongchuan Road Shanghai200240 China Center for Machine Learning Research School of Mathematical Sciences Peking University Beijing100871 China AI for Science Institute Beijing100080 China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University NJ08544 United States Department of Statistics and Probability Michigan State University MI48824 United States
A long standing problem in the modeling of non-Newtonian hydrodynamics of polymeric flows is the availability of reliable and interpretable hydrodynamic models that faithfully encode the underlying micro-scale polymer... 详细信息
来源: 评论
Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence
收藏 引用
Physical Review Fluids 2020年 第5期5卷 054606-054606页
作者: Chenyue Xie Jianchun Wang Weinan E Shenzhen Key Laboratory of Complex Aerospace Flows Center for Complex Flows and Soft Matter Research Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen 518055 People's Republic of China Department of Mathematics Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA
Spatial artificial neural network (ANN) models are developed for subgrid-scale (SGS) forces in the large eddy simulation (LES) of turbulence. The input features are based on the first-order derivatives of the filtered... 详细信息
来源: 评论