Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and NMR spectroscopy as a high-resolution structural method to resolve biological macromolecules. In a cryo-EM experiment, t...
详细信息
The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum f...
详细信息
The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms. Untreated brain metastases on standard anatomic MRI sequences (T1, T2, FLAIR, T1PG) from eight contributed international datasets were annotated in stepwise method: published UNET algorithms, student, neuroradiologist, final approver neuroradiologist. Segmentations were ranked based on lesion-wise Dice and Hausdorff distance (HD95) scores. False positives (FP) and false negatives (FN) were rigorously penalized, receiving a score of 0 for Dice and a fixed penalty of 374 for HD95. The mean scores for the teams were calculated. Eight datasets comprising 1303 studies were annotated, with 402 studies (3076 lesions) released on Synapse as publicly available datasets to challenge competitors. Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) were used for testing. Segmentation accuracy was measured as rank across subjects, with the winning team achieving a LesionWise mean score of 7.9. The Dice score for the winning team was 0.65 ± 0.25. Common errors among the leading teams included false negatives for small lesions and misregistration of masks in space. The Dice scores and lesion detection rates of all algorithms diminished with decreasing tumor size, particularly for tumors smaller than 100 mm3. In conclusion, algorithms for BM segmentation require further refinement to balance high sensitivity in lesion detection with the minimization of false positives and negatives. The BraTS-METS 2023 challenge successfully curated well-annotated, diverse d
The properties of two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers can be dynamically controlled via strain-induced displacive structural transformations between semiconducting (H) and metallic or...
详细信息
The properties of two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers can be dynamically controlled via strain-induced displacive structural transformations between semiconducting (H) and metallic or semimetallic (T′) crystal structures. The shapes, symmetries, and kinetics of crystalline domains generated during these transformations and the mechanical response of transforming monolayers are of fundamental and applied interest in, e.g., phase change memory devices and the study of topologically protected edge states in quantum spin Hall insulating T′ crystals. We quantitatively characterize T′ domain morphologies during H→T′ transformations in both flat and bendable TMD monolayers using a combination of first principles and continuum calculations. Wulff constructions for MoTe2 and MoS2 show that T′ domains within much larger T′ domains are either rhombi of fixed proportions (if nonmisfitting) or rectangles whose aspect ratio AR increases with domain size L0 (if misfitting). Isolated T′ domains within much larger H domains undergo a morphological crossover from compact to elongated shapes at L0≈100–200 nm if the sheet is constrained to be flat or L0≳2μm if the sheet is free to bend. This crossover is driven by a competition between anisotropic interfacial energy and elastic misfit energy, and its position can be tuned via the monolayer-substrate interaction strength. It is shown that the aspect ratio AR obeys a scaling law AR∼L02/3. Stress-strain response characterized as a function of strain orientation reveals extreme anisotropy in the effective elastic modulus through H/T′ coexistence. Ferroelastic multidomain T′−WTe2 monolayers are found to exhibit two to three regimes of reversible mechanical response, and localized buckling in freely suspended T′ monolayers is shown to qualitatively alter T′ domain symmetries.
Chronic care manages long-term, progressive conditions, while acute care addresses short-term conditions. Chronic conditions increasingly strain health systems, which are often unprepared for these demands. This study...
The recent adoption of Electronic Health Records (EHRs) by healthcare providers has introduced an important source of data that provides detailed and highly specific insights into patient phenotypes over large cohorts...
详细信息
The recent adoption of Electronic Health Records (EHRs) by healthcare providers has introduced an important source of data that provides detailed and highly specific insights into patient phenotypes over large cohorts. These datasets, in combination with machine learning and statistical approaches, generate new opportunities for research and clinical care. However, many methods require the patient representations to be in structured formats, while the information in the EHR is often locked in unstructured text designed for human readability. In this work, we develop the methodology to automatically extract clinical features from clinical narratives from large EHR corpora without the need for prior knowledge. We consider medical terms and sentences appearing in clinical narratives as atomic information units. We propose an efficient clustering strategy suitable for the analysis of large text corpora and utilize the clusters to represent information about the patient compactly. Additionally, we define the sentences on ontologic and natural language vocabularies to automatically detect pertinent combinations of concepts present in the corpus, even when an ontology is not available. To demonstrate the utility of our approach, we perform an association study of clinical features with somatic mutation profiles from 4,007 cancer patients and their tumors. We apply the proposed algorithm to a dataset consisting of .65 thousand documents with a total of .3.2 million sentences. After correcting for cancer type and other confounding factors, we identify a total of 340 significant statistical associations between the presence of somatic mutations and clinical features. We annotated these associations according to their novelty and we report several known associations. We also propose 37 plausible, testable hypothesis for associations where the underlying biological mechanism does not appear to be known. These results illustrate that the automated discovery of clinical features
Background: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factor...
Background: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factors and cause-specific death rates in different European countries related to changes in life expectancy in those countries before and during the COVID-19 pandemic. Methods: We used data and methods from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to compare changes in life expectancy at birth, causes of death, and population exposure to risk factors in 16 European Economic Area countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, and Sweden) and the four UK nations (England, Northern Ireland, Scotland, and Wales) for three time periods: 1990–2011, 2011–19, and 2019–21. Changes in life expectancy and causes of death were estimated with an established life expectancy cause-specific decomposition method, and compared with summary exposure values of risk factors for the major causes of death influencing life expectancy. Findings: All countries showed mean annual improvements in life expectancy in both 1990–2011 (overall mean 0·23 years [95% uncertainty interval [UI] 0·23 to 0·24]) and 2011–19 (overall mean 0·15 years [0·13 to 0·16]). The rate of improvement was lower in 2011–19 than in 1990–2011 in all countries except for Norway, where the mean annual increase in life expectancy rose from 0·21 years (95% UI 0·20 to 0·22) in 1990–2011 to 0·23 years (0·21 to 0·26) in 2011–19 (difference of 0·03 years). In other countries, the difference in mean annual improvement between these periods ranged from –0·01 years in Iceland (0·19 years [95% UI 0·16 to 0·21] vs 0·18 years [0·09 to 0·26]), to –0·18 years in England (0·25 years [0·24 to 0·25] vs 0·07 years [0·06 to 0·08]). In 2019–21, there was an overall decrease in mean annual life expectancy a
Our understanding of how chromosomes structurally organize and dynamically interact has been revolutionized through the lens of long-chain polymer physics. Major protein contributors to chromosome structure and dynami...
详细信息
Our understanding of how chromosomes structurally organize and dynamically interact has been revolutionized through the lens of long-chain polymer physics. Major protein contributors to chromosome structure and dynamics are condensin and cohesin that stochastically generate loops within and between chains, and entrap proximal strands of sister chromatids. In this paper, we explore the ability of transient, protein-mediated, gene-gene crosslinks to induce clusters of genes, thereby dynamic architecture, within the highly repeated ribosomal DNA that comprises the nucleolus of budding yeast. We implement three approaches: live cell microscopy;computational modeling of the full genome during G1 in budding yeast, exploring four decades of timescales for transient crosslinks between 5kbp domains (genes) in the nucleolus on Chromosome XII;and, temporal network models with automated community (cluster) detection algorithms applied to the full range of 4D modeling datasets. The data analysis tools detect and track gene clusters, their size, number, persistence time, and their plasticity (deformation). Of biological significance, our analysis reveals an optimal mean crosslink lifetime that promotes pairwise and cluster gene interactions through "flexible" clustering. In this state, large gene clusters self-assemble yet frequently interact (merge and separate), marked by gene exchanges between clusters, which in turn maximizes global gene interactions in the nucleolus. This regime stands between two limiting cases each with far less global gene interactions: with shorter crosslink lifetimes, "rigid" clustering emerges with clusters that interact infrequently;with longer crosslink lifetimes, there is a dissolution of clusters. These observations are compared with imaging experiments on a normal yeast strain and two condensin-modified mutant cell strains. We apply the same image analysis pipeline to the experimental and simulated datasets, providing support for the modeling pred
The stochastic block model (SBM) is a random graph model with different group of vertices connecting differently. It is widely employed as a canonical model to study clustering and community detection, and provides a ...
详细信息
暂无评论