We present a simple and effective way to account for non-convex costs and constraints in state feedback synthesis, and an interpretation for the variables in which state feedback synthesis is typically convex. We achi...
详细信息
Infrared thermography is a cost-effective non-destructive evaluation technique that plays a critical role in extracting information about defects in cultural heritage such as works of art. However, in-depth studies on...
详细信息
Purpose of Review: As weather-dependent renewable generation increases its share in the generation mix of most electric energy systems, a stochastic unit commitment becomes the natural day-ahead scheduling tool. Howev...
详细信息
Systematic faults can often occur during the development of a system. The later such faults are discovered, the more expensive it can be to correct them. In systemsengineering practice, there are many methods and too...
详细信息
Car-following is the most common driving scenario where a following vehicle follows a lead vehicle in the same lane. One crucial factor of car-following behavior is driving style which affects speed and gap selection,...
详细信息
Car-following is the most common driving scenario where a following vehicle follows a lead vehicle in the same lane. One crucial factor of car-following behavior is driving style which affects speed and gap selection, acceleration pattern, and fuel consumption. However, existing car-following research used limited categories of driving style through pre-defined patterns and failed to encode driving style into data-driven car-following models. To address these limitations, we propose the Aggressiveness Informed Car-Following (AICF) modeling approach, which embeds driving style as a dynamic input feature in data-driven car-following models. In detail, We design driving aggressiveness tokens using four physical quantities (jerk, acceleration, relative speed, and relative spacing) to capture the heterogeneity of driving aggressiveness. These tokens were then embedded into a physics-informed Long Short-Term Memory (LSTM) based car-following model for trajectory prediction. To evaluate the effectiveness of our approach, we conducted extensive experiments based on 12,540 car-following events extracted from the HighD dataset and 24,093 events from the Lyft dataset. Compared to models devoid of considerations for driving aggressiveness levels, AICF exhibits superior efficacy in mitigating the Mean Square Error (MSE) of spacing and collision rate. To the best of our knowledge, this is the first work to directly incorporate real-time driving aggressiveness tokens as input features into data-driven car-following models, enabling a more comprehensive understanding of aggressiveness in car-following behavior. IEEE
In this paper, the results of a simulation of a dualband 5G antenna for wireless power transmission using Altair FEKO software are presented. Frequency bands were selected as 4.4-5.0 n 5.15-5.925 GHz, these bands are ...
详细信息
Critical Raw Materials attract increasing attention due to their depleting reserves and low recyclability. Niobium, one of the most rare and vital elements, is primarily found in Brazil. This research explores the pot...
详细信息
Multiagent coordination research tends to focus on strategies such as Multiagent Reinforcement Learning which makes extensive use of inter-agent communication. This works well in abstracted simulations, but may be cha...
详细信息
THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to pos...
详细信息
THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real *** this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5].
In the Kingdom of Saudi Arabia, visual impairment poses significant challenges for approximately 17.5% of school-aged children, mainly due to refractive errors. These challenges extend to everyday navigation, environm...
详细信息
In the Kingdom of Saudi Arabia, visual impairment poses significant challenges for approximately 17.5% of school-aged children, mainly due to refractive errors. These challenges extend to everyday navigation, environmental interaction, and overall life quality. Motivated by the desire to empower visually impaired individuals, who face navigational limitations, difficulties in object recognition, and inadequate assistance from traditional technologies, we propose SightAid. This innovative wearable vision system utilizes a deep learning-based framework, addressing the gaps left by current assistive solutions. Traditional methods, such as canes and GPS devices, often fail to meet the nuanced and dynamic needs of the visually impaired, especially in accurately identifying objects, understanding complex environments, and providing essential real-time feedback for independent navigation. SightAid comprises a seven-phase framework involving data collection, preprocessing, and training of a sophisticated deep neural network with multiple convolutional and fully connected layers. This system is integrated into smart glasses with augmented reality displays, enabling real-time object detection and recognition. Interaction with users is facilitated through audio or haptic feedback, informing them about the location and type of objects detected. A continuous learning mechanism, incorporating user feedback and new data, ensures the system's ongoing refinement and adaptability. For performance assessment, we utilized the MNIST dataset, and an Indoor Objects Detection dataset tailored for the visually impaired, featuring images of everyday objects crucial for safe indoor navigation. SightAid demonstrates remarkable performance with accuracy up to 0.9874, recall values between 0.98 and 0.99, F1-scores ranging from 0.98 to 0.99, and AUC-ROC values reaching as high as 0.9999. These metrics significantly surpass those of traditional methods, highlighting SightAid's potential to substan
暂无评论