The fundamental period plays an important role when a structure is designed for seismic load. Infill walls are non-load-bearing walls created mostly from masonry, concrete, and other heavy materials, filled in the pri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Confidentiality of maintaining the Electronic Health Records of patients is a major concern to both the patient and Doctor. Sharing the data on cloud is one of the most efficient technology infrastructures with extens...
详细信息
In this study,twelve machine learning(ML)techniques are used to accurately estimate the safety factor of rock slopes(SFRS).The dataset used for developing these models consists of 344 rock slopes from various open-pit...
详细信息
In this study,twelve machine learning(ML)techniques are used to accurately estimate the safety factor of rock slopes(SFRS).The dataset used for developing these models consists of 344 rock slopes from various open-pit mines around Iran,evenly distributed between the training(80%)and testing(20%)*** models are evaluated for accuracy using Janbu's limit equilibrium method(LEM)and commercial tool GeoStudio *** assessment metrics show that the random forest model is the most accurate in estimating the SFRS(MSE=0.0182,R2=0.8319)and shows high agreement with the results from the LEM *** results from the long-short-term memory(LSTM)model are the least accurate(MSE=0.037,R2=0.6618)of all the models ***,only the null space support vector regression(NuSVR)model performs accurately compared to the practice mode by altering the value of one parameter while maintaining the other parameters *** is suggested that this model would be the best one to use to calculate the SFRS.A graphical user interface for the proposed models is developed to further assist in the calculation of the SFRS for engineering *** this study,we attempt to bridge the gap between modern slope stability evaluation techniques and more conventional analysis methods.
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boo...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
Many phenomena in nature and technology are associated with the filtration of suspensions and colloids in porous media. Two main types of particle deposition,namely, cake filtration at the inlet and deep bed filtratio...
详细信息
Many phenomena in nature and technology are associated with the filtration of suspensions and colloids in porous media. Two main types of particle deposition,namely, cake filtration at the inlet and deep bed filtration throughout the entire porous medium, are studied by different models. A unified approach for the transport and deposition of particles based on the deep bed filtration model is proposed. A variable suspension flow rate, proportional to the number of free pores at the inlet of the porous medium, is considered. To model cake filtration, this flow rate is introduced into the mass balance equation of deep bed filtration. For the cake filtration without deposit erosion,the suspension flow rate decreases to zero, and the suspension does not penetrate deep into the porous medium. In the case of the cake filtration with erosion, the suspension flow rate is nonzero, and the deposit is distributed throughout the entire porous medium. An exact solution is obtained for a constant filtration function. The method of characteristics is used to construct the asymptotics of the concentration front of suspended and retained particles for a filtration function in a general form. Explicit formulae are obtained for a linear filtration function. The properties of these solutions are studied in detail.
This paper explores the concept of isomorphism in cellular automata (CAs), focusing on identifying and understanding isomorphic relationships between distinct CAs. A cellular automaton (CA) is said to be isomorphic to...
详细信息
Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)*** the emergence of IoT...
详细信息
Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)*** the emergence of IoT-based services,the industry of internet-based devices has *** number of these devices has raised from millions to billions,and it is expected to increase further in the near ***,additional challenges will be added to the traditional centralized cloud-based architecture as it will not be able to handle that growth and to support all connected devices in real-time without affecting the user *** data aggregation models for Fog enabled IoT environ-ments possess high computational complexity and communication ***-fore,in order to resolve the issues and improve the lifetime of the network,this study develops an effective hierarchical data aggregation with chaotic barnacles mating optimizer(HDAG-CBMO)*** HDAG-CBMO technique derives afitness function from many relational matrices,like residual energy,average distance to neighbors,and centroid degree of target ***,a chaotic theory based population initialization technique is derived for the optimal initial position of ***,a learning based data offloading method has been developed for reducing the response time to IoT user requests.A wide range of simulation analyses demonstrated that the HDAG-CBMO technique has resulted in balanced energy utilization and prolonged lifetime of the Fog assisted IoT networks.
In this article, we present the first rigorous theoretical analysis of the generalisation performance of a Geometric Semantic Genetic Programming (GSGP) system. More specifically, we consider a hill-climber using the ...
详细信息
Techniques that exploit spectral-spatial information have proven to be very effective in hyperspectral image classification. Joint sparse representation classification (JSRC) is one such technique which has been exten...
详细信息
暂无评论