The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is...
详细信息
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific information. In Japan's earthquake magnitude dataset, there is a chance of a high imbalance concerning the earthquakes above strong impact. This imbalance causes a high prediction error while training advanced machine learning or deep learning models. In this work, Conditional Tabular Generative Adversarial Networks (CTGAN), a deep machine learning tool, is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information. The result obtained using actual and mixed (synthetic and actual) datasets will be used for training the stacked ensemble magnitude prediction model, MagPred, designed specifically for this study. There are 13295, 3989, and 1710 records designated for training, testing, and validation. The mean absolute error of the test dataset for single station magnitude detection using early three, four, and five seconds of P wave are 0.41, 0.40, and 0.38 MJMA. The study demonstrates that the Generative Adversarial Networks (GANs) can provide a good result for single-station magnitude prediction. The study can be effective where less seismic data is available. The study shows that the machine learning method yields better magnitude detection results compared with the several regression models. The multi-station magnitude prediction study has been conducted on prominent Osaka, Off Fukushima, and Kumamoto earthquakes. Furthermore, to validate the performance of the model, an inter-region study has been performed on the earthquakes of the India or Nepal region. The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods. This has a high potential
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of u...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of users, typically operate in a fully server-based manner, requiring on-device users to upload their behavioral data, including fine-grained spatiotemporal contexts, to the server, which has sparked public concern regarding privacy. Consequently, user devices only upload coarse-grained spatiotemporal contexts for user privacy protection. However, previous research mostly focuses on modeling fine-grained spatiotemporal contexts using knowledge graph convolutional models, which are not applicable to coarse-grained spatiotemporal contexts in privacy-constrained recommender systems. In this paper, we investigate privacy-preserving recommendation by leveraging coarse-grained spatiotemporal contexts. We propose the coarse-grained spatiotemporal knowledge graph for privacy-preserving recommendation(CSKG), which explicitly models spatiotemporal co-occurrences using common-sense knowledge from coarse-grained contexts. Specifically, we begin by constructing a spatiotemporal knowledge graph tailored to coarse-grained spatiotemporal contexts. Then we employ a learnable metagraph network that integrates common-sense information to filter and extract co-occurrences. CSKG evaluates the impact of coarsegrained spatiotemporal contexts on user behavior through the use of a knowledge graph convolutional network. Finally, we introduce joint learning to effectively learn representations. By conducting experiments on two real large-scale datasets,we achieve an average improvement of about 11.0% on two ranking metrics. The results clearly demonstrate that CSKG outperforms state-of-the-art baselines.
Image caption-generating systems aim to deliver accurate, coherent, and useful captions. This includes identifying the scene, items, relationships, and attributes of the image's objects. Due to constraints in usin...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled ...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled smart *** high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for ***,there is a high computation latency due to the presence of a remote cloud *** computing,which brings the computation close to the data source is introduced to overcome this *** an IoT-enabled smart city environment,one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay *** efficient resource allocation at the edge is helpful to address this *** this paper,an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation ***,we presented a three-layer network architecture for IoT-enabled smart ***,we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization *** Automata(LA)is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource *** extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.
Wide field of view and light weight optics are critical for advanced eyewear,with applications in augmented/virtual reality and night *** refractive lenses are often stacked to correct aberrations at a wide field of v...
详细信息
Wide field of view and light weight optics are critical for advanced eyewear,with applications in augmented/virtual reality and night *** refractive lenses are often stacked to correct aberrations at a wide field of view,leading to limited performance and increased size and *** particular,simultaneously achieving a wide field of view and large aperture for light collection is desirable but challenging to realize in a compact ***,we demonstrate a wide field of view(greater than 60°)meta-optic doublet eyepiece with an entrance aperture of 2.1 *** the design wavelength of 633 nm,the meta-optic doublet achieves comparable performance to a refractive lens-based eyepiece *** meta-doublet eyepiece illustrates the potential for meta-optics to play an important role in the development of high-quality monochrome near-eye displays and night vision systems.
Effective task scheduling and resource allocation have become major problems as a result of the fast development of cloud computing as well as the rise of multi-cloud systems. To successfully handle these issues, we p...
详细信息
People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult *** Sign Language Recognition(SLR)syste...
详细信息
People who have trouble communicating verbally are often dependent on sign language,which can be difficult for most people to understand,making interaction with them a difficult *** Sign Language Recognition(SLR)system takes an input expression from a hearing or speaking-impaired person and outputs it in the form of text or voice to a normal *** existing study related to the Sign Language Recognition system has some drawbacks,such as a lack of large datasets and datasets with a range of backgrounds,skin tones,and *** research efficiently focuses on Sign Language Recognition to overcome previous *** importantly,we use our proposed Convolutional Neural Network(CNN)model,“ConvNeural”,in order to train our ***,we develop our own datasets,“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”,both of which have ambiguous backgrounds.“BdSL_OPSA22_STATIC1”and“BdSL_OPSA22_STATIC2”both include images of Bangla characters and numerals,a total of 24,615 and 8437 images,***“ConvNeural”model outperforms the pre-trained models with accuracy of 98.38%for“BdSL_OPSA22_STATIC1”and 92.78%for“BdSL_OPSA22_STATIC2”.For“BdSL_OPSA22_STATIC1”dataset,we get precision,recall,F1-score,sensitivity and specificity of 96%,95%,95%,99.31%,and 95.78%***,in case of“BdSL_OPSA22_STATIC2”dataset,we achieve precision,recall,F1-score,sensitivity and specificity of 90%,88%,88%,100%,and 100%respectively.
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new ap...
详细信息
Cyberbullying,a critical concern for digital safety,necessitates effective linguistic analysis tools that can navigate the complexities of language use in online *** tackle this challenge,our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers(BERT)base model(cased),originally pretrained in *** model is uniquely adapted to recognize the intricate nuances of Arabic online communication,a key aspect often overlooked in conventional cyberbullying detection *** model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media(SM)tweets showing a notable increase in detection accuracy and sensitivity compared to existing *** results on a diverse Arabic dataset collected from the‘X platform’demonstrate a notable increase in detection accuracy and sensitivity compared to existing methods.E-BERT shows a substantial improvement in performance,evidenced by an accuracy of 98.45%,precision of 99.17%,recall of 99.10%,and an F1 score of 99.14%.The proposed E-BERT not only addresses a critical gap in cyberbullying detection in Arabic online forums but also sets a precedent for applying cross-lingual pretrained models in regional language applications,offering a scalable and effective framework for enhancing online safety across Arabic-speaking communities.
Named in-network computing service (NICS) is a potential computing paradigm emerged recently. Benefitted from the characteristics of named addressing and routing, NICS can be flexibly deployed on NDN router side and p...
详细信息
This systematic review gave special attention to diabetes and the advancements in food and nutrition needed to prevent or manage diabetes in all its forms. There are two main forms of diabetes mellitus: Type 1 (T1D) a...
详细信息
暂无评论