Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms ...
详细信息
Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms and demand advanced medical imaging process, thorough clinical assessments, and innovative procedures for accurate diagnosis. The shortage of qualified radiologists further makes the problem more complex to deal with. COVID-19 in particular has resulted in a remarkable number of fatalities around the world. Children below the age of 5 and individuals over 65 are more likely to be affected by lung disorders. It is very hard to diagnose and manage COVID-19 absolutely, but it can be identified earlier by employing computer-aided diagnosis (CAD) technologies to make timely diagnosis. Currently, radiologists adopt technologies, which are driven by artificial intelligence. By using them, medical imaging data, such as chest X-rays and CT scans, can be investigated to identify patterns to diagnose the severity of the virus. This expedites the diagnostic process and enhances accuracy, facilitating more timely and precise medical interventions. The efficiency of artificial intelligence in processing large datasets can directly help healthcare professionals in making diagnosis quicker and more accurate. The objective of the work in this paper is to design and implement deep learning model classifiers, which will effectively categorize the patterns found in the X-rays and CT scans. Methods: Three techniques for categorization are exploited to propose an entirely new hybrid convolutional neural network (CNN) model in this context. MRI and CT image categorization in the first classification method employ Fully Connected (FC) layers. The weights are calculated and tuned for training the algorithm over multiple periods to deliver the maximum precision for classification. The most accurate MRI and CT image characteristics are studied, and deep learning model classifiers
A silicon solar cell with a power conversion efficiency (PCE)of 4% was born in Bell Lab in 1954, seven decades ago. Today,silicon solar cells have reached an efficiency above 25%and achieved pervasive commercial succe...
A silicon solar cell with a power conversion efficiency (PCE)of 4% was born in Bell Lab in 1954, seven decades ago. Today,silicon solar cells have reached an efficiency above 25%and achieved pervasive commercial success [1]. In spite of the steady improvement in efficiency, the interest and enthusiasm in search for new materials and innovative device architectures for newgeneration solar cells have never diminished or subsided;
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile *** research compares the Deep Neural Networks(DNN),Convolutional Neural Networks(CNN),Recurrent Neural Ne...
详细信息
The accurate prediction of bearing capacity is crucial in ensuring the structural integrity and safety of pile *** research compares the Deep Neural Networks(DNN),Convolutional Neural Networks(CNN),Recurrent Neural Networks(RNN),Long Short-Term Memory(LSTM),and Bidirectional LSTM(BiLSTM)algorithms utilizing a data set of 257 dynamic pile load tests for the first ***,this research illustrates the multicollinearity effect on DNN,CNN,RNN,LSTM,and BiLSTM models’performance and accuracy for the first time.A comprehensive comparative analysis is conducted,employing various statistical performance parameters,rank analysis,and error matrix to evaluate the performance of these *** performance is further validated using external validation,and visual interpretation is provided using the regression error characteristics(REC)curve and Taylor *** from the comparative analysis reveal that the DNN(Coefficient of determination(R^(2))_(training(TR))=0.97,root mean squared error(RMSE)_(TR)=0.0413;R^(2)_(testing(TS))=0.9,RMSE_(TS)=0.08)followed by BiLSTM(R^(2)_(TR)=0.91,RMSE_(TR)=0.782;R^(2)_(TS)=0.89,RMSE_(TS)=0.0862)model demonstrates the highest performance *** is noted that the BiLSTM model is better than LSTM because the BiLSTM model,which increases the amount of information for the network,is a sequence processing model made up of two LSTMs,one of which takes the input in a forward manner,and the other in a backward *** prediction of pile-bearing capacity is strongly influenced by ram weight(having a considerable multicollinearity level),and the effect of the considerable multicollinearity level has been determined for the model based on the recurrent neural network *** this study,the recurrent neural network model has the least performance and accuracy in predicting the pile-bearing capacity.
The optimization of civilengineering structures is critical for enhancing structural performance and material efficiency in engineering *** optimization approaches seek to determine the optimal design,by considering ...
详细信息
The optimization of civilengineering structures is critical for enhancing structural performance and material efficiency in engineering *** optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural *** design approaches aim to reduce the built environment’s energy use and carbon *** comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these *** trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were *** review also discusses emerging technologies,such as machine learning applications with different optimization *** of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and *** techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure *** and non-linear structures,including geometric and material nonlinearity,are *** role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.
Investigating trip purposes represents an important phase of travel demand modeling which allows to correctly infer mobility patterns and to better understand travel behavior. Until now, researchers collected informat...
详细信息
The existing incipient sediment motion models typically apply conventional regression methods considering either velocity or shear *** the current study,incipient sediment motion is analyzed through a simultaneous and...
详细信息
The existing incipient sediment motion models typically apply conventional regression methods considering either velocity or shear *** the current study,incipient sediment motion is analyzed through a simultaneous and joint analysis of velocity and shear stress using the robust low-rank learning(RLRL) multi-output regression ***,the experimental data compiled from five different channels are utilized to develop a generic incipient sediment motion model valid for a channel of any cross-sectional *** efficiency of the developed method is examined and compared against the available conventional regression *** experimental results indicate that the RLRL model yields better results than its *** particular,while cross-section specific models fail to provide accurate estimates for shear stress or velocity for other cross sections,the proposed model provides satisfactory results for all channel *** better performance of the recommended approach can be attributed to the joint modeling of the shear stress and the velocity which is realized by capturing the correlation between these parameters in terms of a low rank output mixing matrix which enhances the prediction performance of the approach.
Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater *** machine learning(ML)approaches have been enhanced to improve streamflow *** techniques have been viewed as a vi...
详细信息
Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater *** machine learning(ML)approaches have been enhanced to improve streamflow *** techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone *** researchers have also emphasised using hybrid models to improve forecast ***,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance *** study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML ***’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML *** study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,***,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms.
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions a...
详细信息
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions are firstly detected using visual primitives such as color and shape and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived complexly with bottom-up and top-down strategies combined in human vision. To address this problem, this study proposes a novel end-toend trainable network comprising a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, whereas the two branch nets construct triplet proposals for regional feature mapping and clustering, which drives the network to be bottom-up sensitive to co-salient regions. We construct a new dataset of 2019 natural images with co-saliency in each image to evaluate the proposed method. Experimental results show that the proposed method achieves state-of-the-art accuracy with a running speed of 28 fps.
Identifying drug–target interactions (DTIs) is a critical step in both drug repositioning. The labor-intensive, time-consuming, and costly nature of classic DTI laboratory studies makes it imperative to create effici...
详细信息
暂无评论