Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, an...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, and cost. In recent years, convolution neural networks (CNNs) have revolutionized computer vision. Convolution is a "local" CNN technique that is only applicable to a small region surrounding an image. Vision Transformers (ViT) use self-attention, which is a "global" activity since it collects information from the entire image. As a result, the ViT can successfully gather distant semantic relevance from an image. This study examined several optimizers, including Adamax, SGD, RMSprop, Adadelta, Adafactor, Nadam, and Adagrad. With 1750 Healthy and Glaucoma images in the IEEE fundus image dataset and 4800 healthy and glaucoma images in the LAG fundus image dataset, we trained and tested the ViT model on these datasets. Additionally, the datasets underwent image scaling, auto-rotation, and auto-contrast adjustment via adaptive equalization during preprocessing. The results demonstrated that preparing the provided dataset with various optimizers improved accuracy and other performance metrics. Additionally, according to the results, the Nadam Optimizer improved accuracy in the adaptive equalized preprocessing of the IEEE dataset by up to 97.8% and in the adaptive equalized preprocessing of the LAG dataset by up to 92%, both of which were followed by auto rotation and image resizing processes. In addition to integrating our vision transformer model with the shift tokenization model, we also combined ViT with a hybrid model that consisted of six different models, including SVM, Gaussian NB, Bernoulli NB, Decision Tree, KNN, and Random Forest, based on which optimizer was the most successful for each dataset. Empirical results show that the SVM Model worked well and improved accuracy by up to 93% with precision of up to 94% in the adaptive equalization preprocess
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic *** this study,the specimens of bio-mediated sands were prepared using t...
详细信息
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic *** this study,the specimens of bio-mediated sands were prepared using three different methods,***,mixing,and pouring a given microbial so-lution onto compacted sand *** hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)*** amount of dextran concentration produced by microbes in each type of specimen was quantified by a *** show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture *** injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the *** pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen *** the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign *** dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by *** hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent.
The process of modifying digital images has been made significantly easier by the availability of several image editing software. However, in a variety of contexts, including journalism, judicial processes, and histor...
详细信息
Presently,video surveillance is commonly employed to ensure security in public places such as traffic signals,malls,railway stations,etc.A major chal-lenge in video surveillance is the identification of anomalies that...
详细信息
Presently,video surveillance is commonly employed to ensure security in public places such as traffic signals,malls,railway stations,etc.A major chal-lenge in video surveillance is the identification of anomalies that exist in it such as crimes,thefts,and so ***,the anomaly detection in pedestrian walkways has gained significant attention among the computer vision communities to enhance pedestrian *** recent advances of Deep Learning(DL)models have received considerable attention in different processes such as object detec-tion,image classification,*** this aspect,this article designs a new Panoptic Feature Pyramid Network based Anomaly Detection and Tracking(PFPN-ADT)model for pedestrian *** proposed model majorly aims to the recognition and classification of different anomalies present in the pedestrian walkway like vehicles,skaters,*** proposed model involves panoptic seg-mentation model,called Panoptic Feature Pyramid Network(PFPN)is employed for the object recognition *** object classification,Compact Bat Algo-rithm(CBA)with Stacked Auto Encoder(SAE)is applied for the classification of recognized *** ensuring the enhanced results better anomaly detection performance of the PFPN-ADT technique,a comparison study is made using Uni-versity of California San Diego(UCSD)Anomaly data and other benchmark data-sets(such as Cityscapes,ADE20K,COCO),and the outcomes are compared with the Mask Recurrent Convolutional Neural Network(RCNN)and Faster Convolu-tional Neural Network(CNN)*** simulation outcome demonstrated the enhanced performance of the PFPN-ADT technique over the other methods.
Deep learning technology has extensive application in the classification and recognition of medical images. However, several challenges persist in such application, such as the need for acquiring large-scale labeled d...
详细信息
A common cardiovascular illness with high fatality rates is coronary artery disease (CAD). Researchers have been exploring alternative methods to diagnose and assess the severity of CAD that are less invasive, cost-ef...
详细信息
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of *** HC might be utilized tow...
详细信息
In the present research,we describe a computer-aided detection(CAD)method aimed at automatic fetal head circumference(HC)measurement in 2D ultrasonography pictures during all trimesters of *** HC might be utilized toward determining gestational age and tracking fetal *** automated approach is particularly valuable in low-resource settings where access to trained sonographers is *** CAD system is divided into two steps:to begin,Haar-like characteristics were extracted from ultrasound pictures in order to train a classifier using random forests to find the fetal *** identified the HC using dynamic programming,an elliptical fit,and a Hough *** computer-aided detection(CAD)program was well-trained on 999 pictures(HC18 challenge data source),and then verified on 335 photos from all trimesters in an independent test set.A skilled sonographer and an expert in medicine personally marked the test *** used the crown-rump length(CRL)measurement to calculate the reference gestational age(GA).In the first,second,and third trimesters,the median difference between the standard GA and the GA calculated by the skilled sonographer stayed at 0.7±2.7,0.0±4.5,and 2.0±12.0 days,*** regular duration variance between the baseline GA and the health investigator’s GA remained 1.5±3.0,1.9±5.0,and 4.0±14 a couple of *** mean variance between the standard GA and the CAD system’s GA remained between 0.5 and 5.0,with an additional variation of 2.9 to 12.5 *** outcomes reveal that the computer-aided detection(CAD)program outperforms an expert *** paired with the classifications reported in the literature,the provided system achieves results that are comparable or even *** have assessed and scheduled this computerized approach for HC evaluation,which includes information from all trimesters of gestation.
Alzheimer’s dementia (AD) poses a significant global health challenge, characterized by progressive cognitive decline, memory impairment, and behavioral changes. The critical need for early detection to enable timely...
详细信息
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)***,traditional ML and AutoML approac...
详细信息
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)***,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation *** glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of *** approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model *** validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our *** the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for *** second pipeline is dedicated to feature extraction and classification,utilizing deep learning ***,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class *** ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model *** our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.
Investing money through mutual fund benefits the small investors to access equities of big companies with a small amount of capital. It experiences the fluctuation of price along with the performance of stock, which i...
详细信息
暂无评论