咨询与建议

限定检索结果

文献类型

  • 755 篇 期刊文献
  • 329 篇 会议
  • 6 册 图书

馆藏范围

  • 1,090 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 678 篇 工学
    • 393 篇 计算机科学与技术...
    • 322 篇 软件工程
    • 119 篇 生物工程
    • 92 篇 电气工程
    • 91 篇 生物医学工程(可授...
    • 90 篇 信息与通信工程
    • 84 篇 电子科学与技术(可...
    • 74 篇 控制科学与工程
    • 68 篇 化学工程与技术
    • 64 篇 光学工程
    • 55 篇 材料科学与工程(可...
    • 46 篇 动力工程及工程热...
    • 38 篇 仪器科学与技术
    • 30 篇 力学(可授工学、理...
    • 28 篇 机械工程
    • 27 篇 环境科学与工程(可...
  • 590 篇 理学
    • 273 篇 数学
    • 195 篇 物理学
    • 156 篇 生物学
    • 130 篇 统计学(可授理学、...
    • 76 篇 化学
    • 55 篇 系统科学
    • 47 篇 地球物理学
  • 165 篇 管理学
    • 94 篇 管理科学与工程(可...
    • 66 篇 图书情报与档案管...
    • 53 篇 工商管理
  • 117 篇 医学
    • 87 篇 临床医学
    • 82 篇 基础医学(可授医学...
    • 54 篇 公共卫生与预防医...
    • 43 篇 药学(可授医学、理...
  • 37 篇 农学
  • 26 篇 法学
  • 19 篇 经济学
  • 10 篇 教育学
  • 3 篇 文学

主题

  • 34 篇 machine learning
  • 33 篇 deep learning
  • 32 篇 accuracy
  • 21 篇 predictive model...
  • 21 篇 training
  • 20 篇 real-time system...
  • 18 篇 feature extracti...
  • 15 篇 computational mo...
  • 14 篇 forecasting
  • 14 篇 convolutional ne...
  • 13 篇 covid-19
  • 13 篇 optimization
  • 13 篇 semantics
  • 13 篇 decision making
  • 13 篇 adaptation model...
  • 12 篇 artificial intel...
  • 11 篇 support vector m...
  • 11 篇 generative adver...
  • 9 篇 scalability
  • 9 篇 computer archite...

机构

  • 26 篇 department of co...
  • 12 篇 department of ma...
  • 12 篇 institute for gr...
  • 11 篇 computational sc...
  • 11 篇 institute for co...
  • 11 篇 department of as...
  • 10 篇 department of as...
  • 10 篇 waseda research ...
  • 10 篇 phd in computati...
  • 9 篇 department of co...
  • 9 篇 department for a...
  • 9 篇 national astrono...
  • 9 篇 center for compu...
  • 9 篇 centre for astro...
  • 9 篇 srm institute of...
  • 9 篇 department of as...
  • 8 篇 institut d’astro...
  • 8 篇 department of ph...
  • 8 篇 department of as...
  • 8 篇 department of ai...

作者

  • 40 篇 masuda naoki
  • 20 篇 divya nimma
  • 13 篇 herrera-viedma e...
  • 12 篇 shoeibi afshin
  • 10 篇 nimma divya
  • 10 篇 bezanson rachel
  • 10 篇 leja joel
  • 10 篇 akshya j.
  • 9 篇 price sedona h.
  • 9 篇 choudhry mani de...
  • 9 篇 atek hakim
  • 9 篇 whitaker katheri...
  • 9 篇 wang bingjie
  • 9 篇 reinhart wesley ...
  • 9 篇 fujimoto seiji
  • 9 篇 weaver john r.
  • 9 篇 pan richard
  • 9 篇 mani deepak chou...
  • 9 篇 greene jenny e.
  • 9 篇 naoki masuda

语言

  • 859 篇 英文
  • 223 篇 其他
  • 11 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 俄文
检索条件"机构=Department of Computational Data Science and Engineering"
1090 条 记 录,以下是921-930 订阅
排序:
Soft MAX phases with boron substitution: A computational prediction
收藏 引用
Physical Review Materials 2018年 第10期2卷 103605-103605页
作者: Poulami Chakraborty Aurab Chakrabarty Amlan Dutta Tanusri Saha-Dasgupta Department of Condensed Matter Physics and Materials Science S. N. Bose National Centre for Basic Sciences JD Block Sector III Salt Lake Kolkata 700106 India Department of Metallurgical and Materials Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India Center for Mathematical Computational and Data Science Indian Association for the Cultivation of Science Kolkata 700032 India
With a goal to improve upon the mechanical properties of the MAX phase, materials of high technological interest, we explore boron substitution in these compounds. Employing first-principles density functional theory ... 详细信息
来源: 评论
Dense matter with eXTP
收藏 引用
science China(Physics,Mechanics & Astronomy) 2019年 第2期62卷 28-44页
作者: Anna L.Watts WenFei Yu Juri Poutanen Shu Zhang Sudip Bhattacharyya Slavko Bogdanov Long Ji Alessandro Patruno Thomas E.Riley Pavel Bakala Altan Baykal Federico Bernardini Ignazio Bombaci Edward Brown Yuri Cavecchi Deepto Chakrabarty Jér?me Chenevez Nathalie Degenaar Melania Del Santo Tiziana Di Salvo Victor Doroshenko Maurizio Falanga Robert D.Ferdman Marco Feroci Angelo F.Gambino MingYu Ge Svenja K.Greif Sebastien Guillot Can Gungor Dieter H.Hartmann Kai Hebeler Alexander Heger Jeroen Homan Rosario Iaria Jean in 't Zand Oleg Kargaltsev Aleksi KurkelaTheoretical Physics department CERN XiaoYu Lai Ang Li XiangDong Li ZhaoSheng Li Manuel Linares FangJun Lu Simin Mahmoodifar Mariano Méndez M.Coleman Miller Sharon Morsink Joonas N?ttil? Andrea Possenti Chanda Prescod-Weinstein JinLu Qu Alessandro Riggio Tuomo Salmi Andrea Sanna Andrea Santangelo Hendrik Schatz Achim Schwenk LiMing Song Eva?rámková Benjamin Stappers Holger Stiele Tod Strohmayer Ingo Tews Laura Tolos Gabriel T?r?k David Tsang Martin Urbanec Andrea Vacchi RenXin Xu YuPeng Xu Silvia Zane GuoBao Zhang ShuangNan Zhang WenDa Zhang ShiJie Zheng Xia Zhou Anton Pannekoek Institute for Astronomy University of Amsterdam Shanghai Astronomical Observatory Tuorla Observatory Department of Physics and Astronomy University of Turku Nordita KTH Royal Institute of Technology and Stockholm University Institute of High Energy Physics Chinese Academy Sciences Tata Institute of Fundamental Research Columbia Astrophysics Laboratory Columbia University Institut für Astronomie und Astrophysik Tübingen Universit?t Tübingen Leiden Observatory Leiden University Research Center for Computational Physics and Data Processing Silesian University in Opava Physics Department Middle East Technical University INAF Osservatorio Astronomico di Roma New York University Abu Dhabi Dipartimento di Fisica Enrico Fermi University of Pisa INFN Italian National Institute for Nuclear Physics Department of Physics and Astronomy Michigan State University Department of Astrophysical Sciences Princeton University Mathematical Sciences and STAG Research Centre University of Southampton MIT Kavli Institute for Astrophysics and Space Research DTU Space Technical University of Denmark INAF/IASF Palermo via Ugo La Malfa 153 Universita degli Studi di Palermo Dipartimento di Fisica e Chimica International Space Science Institute (ISSI) Faculty of Science University of East Anglia INAF Istituto di Astrofisica e Planetologie Spaziali Institut für Kernphysik Technische Universit?t Darmstadt ExtreMe Matter Institute EMMI GSI Helmholtzzentrum für Schwerionenforschung GmbH Instituto de Astrof'?sica Pontificia Universidad Católica de Chile Department of Physics & Astronomy Kinard Lab of Physics Clemson University School of Physics and Astronomy Monash University SRON Netherlands Institute for Space Research Department of Physics The George Washington University Faculty of Science and Technology University of Stavanger School of Physics and Mechanical & Electrical Engineering Hubei University of Education Department of Astronomy Xiamen University (Haiyun Campus) School of Astronomy and Space
In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be rep... 详细信息
来源: 评论
Modeling temporal networks with bursty activity patterns of nodes and links
arXiv
收藏 引用
arXiv 2019年
作者: Hiraoka, Takayuki Masuda, Naoki Li, Aming Jo, Hang-Hyun Asia Pacific Center for Theoretical Physics Pohang37673 Korea Republic of Department of Mathematics University at Buffalo State University of New York BuffaloNY14260-2900 United States Computational and Data-Enabled Science and Engineering Program University at Buffalo State University of New York BuffaloNY14260-5030 United States Department of Zoology University of Oxford OxfordOX1 3PS United Kingdom Department of Biochemistry University of Oxford OxfordOX1 3QU United Kingdom Department of Physics Pohang University of Science and Technology Pohang37673 Korea Republic of Department of Computer Science Aalto University EspooFI-00076 Finland
The concept of temporal networks provides a framework to understand how the interaction between system components changes over time. In empirical communication data, we often detect non-Poissonian, so-called bursty be... 详细信息
来源: 评论
Mutual clustering on comparative texts via heterogeneous information networks
arXiv
收藏 引用
arXiv 2019年
作者: Cao, Jianping Wang, Senzhang Wen, Danyan Peng, Zhaohui Yu, Philip S. Wang, Fei-yue Research Center for Military Computational Experiments and Parallel Systems Technology National University of Defense Technology Changsha410073 China Ministry of Industry and Information Technology Nanjing211106 China School of Economics & Management Nanjing University of Science and Technology Nanjing210094 China School of Computer Science and Technology Shandong University Qingdao China Department of Computer Science University of Illinois at Chicago Chicago60607 United States Institute for Data Science Tsinghua University Beijing100084 China Beijing China Qingdao Academy of Intelligent Industries Qingdao266000 China Institute of Systems Engineering Macau University of Science and Technology Macau999078 China
Currently, many intelligence systems contain the texts from multi-sources, e.g., bulletin board system (BBS) posts, tweets and news. These texts can be "comparative" since they may be semantically correlated... 详细信息
来源: 评论
High temperature structure detection in ferromagnets
arXiv
收藏 引用
arXiv 2018年
作者: Cao, Yuan Neykov, Matey Liu, Han Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Department of Statistics & Data Science Carnegie Mellon University PittsburghPA United States Department of Electrical Engineering and Computer Science Northwestern University EvanstonIL United States
This paper studies structure detection problems in high temperature ferromagnetic (positive interaction only) Ising models. The goal is to distinguish whether the underlying graph is empty, i.e., the model consists of... 详细信息
来源: 评论
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems  18
End-to-end symmetry preserving inter-atomic potential energy...
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Linfeng Zhang Jiequn Han Han Wang Wissam A. Saidi Roberto Car E. Weinan Program in Applied and Computational Mathematics Princeton University Institute of Applied Physics and Computational Mathematics China and CAEP Software Center for High Performance Numerical Simulation China Department of Mechanical Engineering and Materials Science University of Pittsburgh Program in Applied and Computational Mathematics Princeton University and Department of Chemistry and Department of Physics Princeton University and Princeton Institute for the Science and Technology of Materials Princeton University Program in Applied and Computational Mathematics Princeton University and Department of Mathematics Princeton University and Beijing Institute of Big Data Research China
Machine learning models are changing the paradigm of molecular modeling, which is a fundamental tool for material science, chemistry, and computational biology. Of particular interest is the inter-atomic potential ene...
来源: 评论
Learning from learning machines: A new generation of AI technology to meet the needs of science
arXiv
收藏 引用
arXiv 2021年
作者: Pion-Tonachini, Luca Bouchard, Kristofer Martin, Hector Garcia Peisert, Sean Holtz, W. Bradley Aswani, Anil Dwivedi, Dipankar Wainwright, Haruko Pilania, Ghanshyam Nachman, Benjamin Marrone, Babetta L. Falco, Nicola Prabhat Arnold, Daniel Wolf-Yadlin, Alejandro Powers, Sarah Climer, Sharlee Jackson, Quinn Carlson, Ty Sohn, Michael Zwart, Petrus Kumar, Neeraj Justice, Amy Tomlin, Claire Jacobson, Daniel Micklem, Gos Gkoutos, Georgios V. Bickel, Peter J. Cazier, Jean-Baptiste Müller, Juliane Webb-Robertson, Bobbie-Jo Stevens, Rick Anderson, Mark Kreutz-Delgado, Ken Mahoney, Michael W. Brown, James B. Pattern Computer Inc. Friday HarborWA98250 United States Biosciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computational Research Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Helen Wils Neuroscience Institute Redwood Center for Theoretical Neuroscience Uc Berkeley BerkeleyCA94720 United States Doe Agile BioFoundry Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Joint BioEnergy Institute Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Bcam Basque Center for Applied Mathematics Bilbao48009 Spain Computer Science University of California Davis DavisCA95616 United States Cenic La MiradaCA90638 United States Health Informatics University of California Davis School of Medicine SacramentoCA95817 United States Berkeley Institute for Data Science University of California Berkeley BerkeleyCA94720 United States Industrial Engineering and Operations Research University of California Berkeley BerkeleyCA94720 United States Environmental & Earth Sciences Area Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Nuclear Engineering University of California Berkeley BerkeleyCA94720 United States Materials Science and Technology Division Los Alamos National Laboratory Los AlamosNM87545 United States Physics Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Bioscience Division Los Alamos National Laboratory Los AlamosNM87545 United States Earth and Environmental Sciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Energy Technologies Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computing and Computational Sciences Oak Ridge National Laboratory Oak RidgeTN37831 United States Industrial & Systems Engineering The University of Tennessee KnoxvilleTN37996 United States Department of Computer Science University of Missouri-Saint Louis St. LouisMO63121 United
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery. The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patte... 详细信息
来源: 评论
A study of complex deep learning networks on high-performance, neuromorphic, and quantum computers
A study of complex deep learning networks on high-performanc...
收藏 引用
作者: Potok, Thomas E. Schuman, Catherine Young, Steven Patton, Robert Spedalieri, Federico Liu, Jeremy Yao, Ke-Thia Rose, Garrett Chakma, Gangotree Computational Data Analytics Group Oak Ridge National Laboratory P.O. Box 2008 Oak RidgeTN37831 United States University of Southern California Information Sciences Institute 4676 Admiralty Way Marina del ReyCA90292 United States Department of Electrical Engineering and Computer Science University of Tennessee 1520 Middle Dr KnoxvilleTN37996 United States
Current deep learning approaches have been very successful using convolutional neural networks trained on large graphical-processing-unit-based computers. Three limitations of this approach are that (1) they are based... 详细信息
来源: 评论
Unsupervised extraction of phenotypes from cancer clinical notes for association studies
arXiv
收藏 引用
arXiv 2019年
作者: Stark, Stefan G. Hyland, Stephanie L. Pradier, Melanie F. Lehmann, Kjong-Van Wicki, Andreas Perez-Cruz, Fernando Vogt, Julia E. Rätsch, Gunnar Computational Biology Program Memorial Sloan Kettering Cancer Center New York United States Tri-Institutional Ph.D. Program in Computational Biology and Medicine Weill Cornell Medicine New York United States Department of Computer Science ETH Zürich Zürich Switzerland Medical Informatics Group University Hospital Zürich Zürich Switzerland Swiss Institute for Bioinformatics Zurich Switzerland Department of Biology ETH Zürich Zürich Switzerland Department of Signal Processing and Information Theory University Carlos III in Madrid Leganés Spain School of Engineering and Applied Sciences Harvard University CambridgeMA United States Department of Biomedicine University of Basel Basel Switzerland Tumorzentrum University Hospital Basel Basel Switzerland Swiss Data Science Center ETH Zürich and EPFL Lausanne Switzerland Department of Mathematics and Computer Science University of Basel Basel Switzerland
The recent adoption of Electronic Health Records (EHRs) by healthcare providers has introduced an important source of data that provides detailed and highly specific insights into patient phenotypes over large cohorts... 详细信息
来源: 评论
Extending the π-Conjugated System in Spiro-Type Hole Transport Material Enhances the Efficiency and Stability of Perovskite Solar Modules
收藏 引用
Angewandte Chemie 2023年 第29期135卷
作者: Xuepeng Liu Bin Ding Mingyuan Han Zhenhai Yang Jianlin Chen Pengju Shi Xiangying Xue Rahim Ghadari Xianfu Zhang Rui Wang Keith Brooks Li Tao Sachin Kinge Songyuan Dai Jiang Sheng Paul J. Dyson Mohammad Khaja Nazeeruddin Yong Ding Beijing Key Laboratory of Novel Thin-Film Solar Cells School of New Energy North China Electric Power University Beijing 102206 P. R. China Contribution: ​Investigation (lead) Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland Contribution: Methodology (lead) Contribution: Methodology (equal) Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences (CAS) Ningbo 315201 China Contribution: Data curation (equal) Contribution: Validation (equal) School of Engineering Westlake University Hangzhou 310024 China Contribution: Formal analysis (equal) Contribution: ​Investigation (equal) Computational Chemistry Laboratory Department of Organic and Biochemistry Faculty of Chemistry University of Tabriz Tabriz *** Iran Contribution: Software (lead) Contribution: Visualization (equal) School of Microelectronic & Faculty of Physics and Electronic Science Hubei University Wuhan 430062 China Toyota Motor Europe Toyota Motor Technical Centre Advanced Technology Div. Hoge Wei 33 1930 Zaventum Belgium Contribution: Resources (equal) Contribution: Supervision (equal) Contribution: Writing - original draft (equal) Writing - review & editing (equal) Contribution: Conceptualization (equal) Writing - original draft (equal) Writing - review & editing (equal) Contribution: Supervision (equal) Writing - original draft (lead)
Hole transport materials (HTMs) are a key component of perovskite solar cells (PSCs). The small molecular 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9′-spirobifluorene (spiro-OMeTAD, termed “Spiro”) is th... 详细信息
来源: 评论