咨询与建议

限定检索结果

文献类型

  • 768 篇 期刊文献
  • 328 篇 会议
  • 6 册 图书

馆藏范围

  • 1,102 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 686 篇 工学
    • 400 篇 计算机科学与技术...
    • 327 篇 软件工程
    • 120 篇 生物工程
    • 96 篇 电气工程
    • 92 篇 生物医学工程(可授...
    • 90 篇 信息与通信工程
    • 85 篇 电子科学与技术(可...
    • 75 篇 控制科学与工程
    • 68 篇 化学工程与技术
    • 64 篇 光学工程
    • 50 篇 材料科学与工程(可...
    • 47 篇 动力工程及工程热...
    • 38 篇 仪器科学与技术
    • 31 篇 力学(可授工学、理...
    • 31 篇 机械工程
    • 28 篇 环境科学与工程(可...
  • 598 篇 理学
    • 269 篇 数学
    • 199 篇 物理学
    • 160 篇 生物学
    • 126 篇 统计学(可授理学、...
    • 79 篇 化学
    • 55 篇 系统科学
    • 47 篇 地球物理学
  • 169 篇 管理学
    • 94 篇 管理科学与工程(可...
    • 69 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 123 篇 医学
    • 90 篇 临床医学
    • 85 篇 基础医学(可授医学...
    • 56 篇 公共卫生与预防医...
    • 43 篇 药学(可授医学、理...
  • 38 篇 农学
  • 27 篇 法学
  • 20 篇 经济学
  • 10 篇 教育学
  • 4 篇 文学

主题

  • 35 篇 machine learning
  • 33 篇 deep learning
  • 31 篇 accuracy
  • 20 篇 predictive model...
  • 20 篇 training
  • 19 篇 real-time system...
  • 17 篇 feature extracti...
  • 15 篇 convolutional ne...
  • 14 篇 computational mo...
  • 14 篇 forecasting
  • 13 篇 covid-19
  • 13 篇 optimization
  • 13 篇 semantics
  • 13 篇 decision making
  • 12 篇 adaptation model...
  • 11 篇 support vector m...
  • 11 篇 generative adver...
  • 11 篇 artificial intel...
  • 9 篇 scalability
  • 9 篇 computer archite...

机构

  • 26 篇 department of co...
  • 12 篇 department of ma...
  • 12 篇 institute for gr...
  • 11 篇 computational sc...
  • 11 篇 institute for co...
  • 11 篇 department of as...
  • 10 篇 department of as...
  • 10 篇 waseda research ...
  • 10 篇 phd in computati...
  • 9 篇 department of co...
  • 9 篇 department for a...
  • 9 篇 national astrono...
  • 9 篇 center for compu...
  • 9 篇 centre for astro...
  • 9 篇 srm institute of...
  • 9 篇 department of as...
  • 8 篇 department of ph...
  • 8 篇 department of as...
  • 8 篇 department of ai...
  • 8 篇 computational an...

作者

  • 40 篇 masuda naoki
  • 20 篇 divya nimma
  • 12 篇 shoeibi afshin
  • 12 篇 herrera-viedma e...
  • 11 篇 akshya j.
  • 10 篇 bezanson rachel
  • 10 篇 leja joel
  • 10 篇 mani deepak chou...
  • 10 篇 naoki masuda
  • 9 篇 price sedona h.
  • 9 篇 choudhry mani de...
  • 9 篇 atek hakim
  • 9 篇 whitaker katheri...
  • 9 篇 wang bingjie
  • 9 篇 nimma divya
  • 9 篇 reinhart wesley ...
  • 9 篇 fujimoto seiji
  • 9 篇 weaver john r.
  • 9 篇 pan richard
  • 9 篇 greene jenny e.

语言

  • 972 篇 英文
  • 122 篇 其他
  • 9 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 俄文
检索条件"机构=Department of Computational Engineering and Data Science"
1102 条 记 录,以下是661-670 订阅
排序:
A reduced unified continuum formulation for vascular fluid-structure interaction
arXiv
收藏 引用
arXiv 2021年
作者: Lan, Ingrid S. Liu, Ju Yang, Weiguang Marsden, Alison L. Department of Bioengineering Stanford University StanfordCA94305 United States Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Guangdong Shenzhen518055 China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications Southern University of Science and Technology Guangdong Shenzhen518055 China Stanford University StanfordCA94305 United States Institute for Computational and Mathematical Engineering Stanford University StanfordCA94305 United States
We recently derived the unified continuum and variational multiscale formulation for fluid-structure interaction (FSI) using the Gibbs free energy as the thermodynamic potential. Restricting our attention to vascular ... 详细信息
来源: 评论
Nuclear Neural Networks: Emulating Late Burning Stages in Core Collapse Supernova Progenitors
arXiv
收藏 引用
arXiv 2025年
作者: Grichener, Aldana Renzo, Mathieu Kerzendorf, Wolfgang E. Farmer, Rob de Mink, Selma E. Bellinger, Earl Patrick Chan, Chi-Kwan Chen, Nutan Farag, Ebraheem Justham, Stephen Steward Steward Observatory Department of Astronomy University of Arizona 933 North Cherry Avenue TucsonAZ85721 United States Max Planck Institute for Astrophysics Karl-Schwarzschild-Str. 1 Garching85748 Germany Department of Physics Technion Haifa3200003 Israel Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI48824 United States Department of Physics and Astronomy Michigan State University East LansingMI48824 United States Ludwig-Maximilians-Universitat Munchen Geschwister-Scholl-Platz 1 Munchen80539 Germany Department of Astronomy Yale University New HavenCT06511 United States Steward Observatory Department of Astronomy University of Arizona 933 North Cherry Avenue TucsonAZ85721 United States Data Science Institute University of Arizona 1230 N. Cherry Avenue TucsonAZ85721 United States Program in Applied Mathematics University of Arizona 617 North Santa Rita TucsonAZ85721 United States Machine Learning Research Lab Volkswagen AG Munich38440 Germany
One of the main challenges in modeling massive stars to the onset of core collapse is the computational bottleneck of nucleosynthesis during advanced burning stages. The number of isotopes formed requires solving a la... 详细信息
来源: 评论
Robust charge-density wave correlations in the electron-doped single-band Hubbard model
arXiv
收藏 引用
arXiv 2022年
作者: Mai, Peizhi Nichols, Nathan S. Karakuzu, Seher Bao, Feng Maestro, Adrian Del Maier, Thomas A. Johnston, Steven Computational Sciences and Engineering Division Oak Ridge National Laboratory Oak RidgeTN37831-6494 United States Department of Physics Institute of Condensed Matter Theory University of Illinois at Urbana-Champaign UrbanaIL61801 United States Data Science and Learning Division Argonne National Laboratory ArgonneIL60439 United States Center for Computational Quantum Physics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Department of Mathematics Florida State University TallahasseeFL32306 United States Department of Physics and Astronomy The University of Tennessee KnoxvilleTN37996 United States Institute of Advanced Materials and Manufacturing The University of Tennessee KnoxvilleTN37996 United States Min H. Kao Department of Electrical Engineering and Computer Science University of Tennessee KnoxvilleTN37996 United States
There is growing evidence that the hole-doped single-band Hubbard and t-J models do not have a superconducting ground state reflective of the high-temperature cuprate superconductors but instead have striped spin- and... 详细信息
来源: 评论
An Information-Theoretic Framework for Optimal Experimental Design in Magnetic Nanoparticle Hyperthermia
SSRN
收藏 引用
SSRN 2025年
作者: Nandyala, Mahesh Lanham, Andrew Jha, Prashant K. Wu, Chengyue Hazle, John D. Yankeelov, Thomas E. Stafford, R. Jason El-Gendy, Ahmed A. Fuentes, David Oden Institute for Computational Engineering and Sciences The University of Texas at Austin AustinTX78712 United States Department of Imaging Physics The University of Texas M.D. Anderson Cancer Center HoustonTX77030 United States Applied Research Laboratories The University of Texas at Austin AustinTX78758 United States Department of Mechanical Engineering South Dakota School of Mines and Technology Rapid CitySD57701 United States Department of Breast Imaging The University of Texas M.D. Anderson Cancer Center HoustonTX77030 United States Department of Biostatistics The University of Texas M.D. Anderson Cancer Center HoustonTX77030 United States The Institute for Data Science in Oncology The University of Texas M.D. Anderson Cancer Center HoustonTX77030 United States Department of Biomedical Engineering The University of Texas at Austin AustinTX78712 United States Department of Diagnostic Medicine The University of Texas at Austin AustinTX78712 United States Department of Oncology The University of Texas at Austin AustinTX78712 United States Livestrong Cancer Institutes The University of Texas at Austin AustinTX78712 United States Department of Physics University of Texas at El Paso El PasoTX79968 United States
Magnetic nanoparticle hyperthermia is an emerging cancer therapy that utilizes magnetic nanoparticles subjected to alternating magnetic fields to generate localized heating and selectively target tumor tissues. Despit... 详细信息
来源: 评论
Solvers for Large-Scale Electronic Structure Theory: ELPA and ELSI
arXiv
收藏 引用
arXiv 2025年
作者: Karpov, Petr Marek, Andreas Melson, Tobias Pöppl, Alexander Yu, Victor Wen-Zhe Hourahine, Ben Garcia, Alberto Dawson, William Yao, Yi Huhn, William Moussa, Jonathan Hall, Sam Maurer, Reinhard Herath, Uthpala Lion, Konstantin Kokott, Sebastian Blum, Volker Max Planck Computing and Data Facility Garching Germany Intel Corporation Santa ClaraCA United States Thomas Lord Department of Mechanical Engineering and Materials Science Duke University DurhamNC27708 United States Department of Physics SUPA University of Strathclyde John Anderson Building107 Rottenrow GlasgowG4 0NG United Kingdom Institut de Ciència de Materials de Barcelona ICMAB-CSIC Campus UAB Bellaterra08193 Spain RIKEN Center for Computational Science Kobe650-0047 Japan Molecular Simulations from First Principles e.V. BerlinD-14195 Germany Intel Corporation 500 Beaver Brook Road BoxboroughMA01719 United States Molecular Sciences Software Institute BlacksburgVA24060 United States University of Warwick United Kingdom Department of Chemistry Duke University DurhamNC27708 United States
In this contribution, we give an overview of the ELPA library and ELSI interface, which are crucial elements for large-scale electronic structure calculations in FHI-aims. ELPA is a key solver library that provides ef... 详细信息
来源: 评论
Model interpretability through the lens of computational complexity  20
Model interpretability through the lens of computational com...
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Pablo Barceló Mikaël Monet Jorge Pérez Bernardo Subercaseaux Institute for Mathematical and Computational Engineering PUC-Chile and Millennium Institute for Foundational Research on Data Chile Inria Lille France Department of Computer Science Universidad de Chile and Millennium Institute for Foundational Research on Data Chile
In spite of several claims stating that some models are more interpretable than others - e.g., "linear models are more interpretable than deep neural networks" - we still lack a principled notion of interpre...
来源: 评论
Medical history predicts phenome-wide disease onset and enables the rapid response to emerging health threats (vol 16, 585, 2025)
收藏 引用
NATURE COMMUNICATIONS 2025年 第1期16卷 1-15页
作者: Steinfeldt, Jakob Wild, Benjamin Buergel, Thore Pietzner, Maik Upmeier zu Belzen, Julius Vauvelle, Andre Hegselmann, Stefan Denaxas, Spiros Hemingway, Harry Langenberg, Claudia Landmesser, Ulf Deanfield, John Eils, Roland Department of Cardiology Angiology and Intensive Care Medicine Deutsches Herzzentrum der Charité (DHZC) Berlin Germany Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Klinik/Centrum Berlin Germany Computational Medicine Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany Friede Springer Cardiovascular Prevention Center@Charite Charite - University Medicine Berlin Berlin Germany Institute of Cardiovascular Sciences University College London London UK Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany DZHK (German Centre for Cardiovascular Research) Partner Site Berlin Berlin Berlin Germany MRC Epidemiology Unit Institute of Metabolic Science University of Cambridge Cambridge UK Precision Health University Research Institute Queen Mary University of London and Barts NHS Trust London UK Center for Digital Health Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany Health Data Science Unit Heidelberg University Hospital and BioQuant Heidelberg Germany Institute of Health Informatics University College London London UK British Heart Foundation Data Science Centre London UK Health Data Research UK London UK National Institute for Health Research Biomedical Research Centre at University College London Hospitals London UK Institute for Medical Engineering and Science Massachusetts Institute of Technology Massachusetts USA Pattern Recognition and Image Analysis Lab University of Münster Münster Germany
The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 17...
来源: 评论
Identifying Reasons for Contraceptive Switching from Real-World data Using Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Miao, Brenda Y. Williams, Christopher Y.K. Chinedu-Eneh, Ebenezer Zack, Travis Alsentzer, Emily Butte, Atul J. Chen, Irene Y. Bakar Computational Health Sciences Institute University of California San Francisco San FranciscoCA United States Department of Medicine University of California San Francisco San FranciscoCA United States Helen Diller Family Comprehensive Cancer Center University of California San Francisco San FranciscoCA United States Division of General Internal Medicine Brigham and Women's Hospital BostonMA United States Harvard Medical School BostonMA United States Center for Data-driven Insights and Innovation University of California Office of the President OaklandCA United States Computational Precision Health University of California Berkeley University of California San Francisco BerkeleyCA United States Electrical Engineering and Computer Science University of California Berkeley BerkeleyCA United States Berkeley AI Research University of California Berkeley BerkeleyCA United States
Background: Understanding why patients switch contraceptives is of significant interest but these factors are often only captured in unstructured clinical notes and can be difficult to extract. We evaluate the zero-sh... 详细信息
来源: 评论
Comparison of Point Cloud and Image-based Models for Calorimeter Fast Simulation
arXiv
收藏 引用
arXiv 2023年
作者: Acosta, Fernando Torales Mikuni, Vinicius Nachman, Benjamin Arratia, Miguel Karki, Bishnu Milton, Ryan Karande, Piyush Angerami, Aaron Physics Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States National Energy Research Scientific Computing Center Berkeley Lab BerkeleyCA94720 United States Berkeley Institute for Data Science University of California BerkeleyCA94720 United States Department of Physics and Astronomy University of California RiversideCA92521 United States Thomas Jefferson National Accelerator Facility Newport NewsVA23606 United States Computational Engineering Division Lawrence Livermore National Laboratory LivermoreCA94550 United States Nuclear and Chemical Science Division Lawrence Livermore National Laboratory LivermoreCA94550 United States
Score based generative models are a new class of generative models that have been shown to accurately generate high dimensional calorimeter datasets. Recent advances in generative models have used images with 3D voxel... 详细信息
来源: 评论
A Modified Clustering Using Representatives to Enhance and Optimize Tracking and Monitoring of Maritime Traffic in Real-time Using Automatic Identification System data
A Modified Clustering Using Representatives to Enhance and O...
收藏 引用
International Conference on computational science and computational Intelligence (CSCI)
作者: Cheronika Manyfield-Donald Tor A. Kwembe Jing-Ru C. Cheng Computational Data-Enabled Science and Engineering Jackson State University Jackson MS USA Department of Mathematics and Statistical Sciences Jackson State University Jackson MS USA Information Technology Lab. Engineer Research and Development Center U.S. Army Corps of Engineers Vicksburg MS USA
In this paper, we introduce a modification of the Clustering Using Representatives (CURE) algorithm to enhance and optimize the tracking and monitoring of maritime traffic in real-time using the Automatic Identificati... 详细信息
来源: 评论