Accurately predicting the Normalized Difference Vegetation Index (NDVI) is crucial for effective agricultural planning and decision-making. Despite much literature on NDVI prediction, most of these methods do not cons...
详细信息
By analyzing data gathered through Online Learning(OL)systems,data mining can be used to unearth hidden relationships between topics and trends in student ***,in this paper,we show how data mining techniques such as c...
详细信息
By analyzing data gathered through Online Learning(OL)systems,data mining can be used to unearth hidden relationships between topics and trends in student ***,in this paper,we show how data mining techniques such as clustering and association rule algorithms can be used on historical data to develop a unique recommendation system *** our implementation,we utilize historical data to generate association rules specifically for student test marks below a threshold of 60%.By focusing on marks below this threshold,we aim to identify and establish associations based on the patterns of weakness observed in the past ***,we leverage K-means clustering to provide instructors with visual representations of the generated *** strategy aids instructors in better comprehending the information and associations produced by the *** clustering helps visualize and organize the data in a way that makes it easier for instructors to analyze and gain insights,enabling them to support the verification of the relationship between *** can be a useful tool to deliver better feedback to students as well as provide better insights to instructors when developing their *** paper further shows a prototype implementation of the above-mentioned concepts to gain opinions and insights about the usability and viability of the proposed system.
We demonstrate the ability of a large language model to perform evolutionary optimization for materials ***’s Claude 3.5 model outperforms an active learning scheme with handcrafted surrogate models and an evolutiona...
详细信息
We demonstrate the ability of a large language model to perform evolutionary optimization for materials ***’s Claude 3.5 model outperforms an active learning scheme with handcrafted surrogate models and an evolutionary algorithm in selecting monomer sequences to produce targeted morphologies in macromolecular *** pre-trained language models can potentially reduce the need for hyperparameter tuning while offering new capabilities such as *** model performs this task effectively with orwithout context about the task itself,but domain-specific context sometimes results in faster convergence to good ***,when this context is withheld,the model infers an approximate notion of the task(e.g.,calling it a protein folding problem).This work provides evidence of Claude 3.5’s ability to act as an evolutionary optimizer,a recently discovered emergent behavior of large language models,and demonstrates a practical use case in the study and design of soft materials.
Nonlinear mathematical models introduce the relation between various physical and biological interactions present in nature. One of the most famous models is the Lotka–Volterra model which defined the interaction bet...
详细信息
IIF(Indirect Immune Florescence)has gained much attention recently due to its importance in medical *** primary purpose of this work is to highlight a step-by-step methodology for detecting autoimmune *** use of IIF f...
详细信息
IIF(Indirect Immune Florescence)has gained much attention recently due to its importance in medical *** primary purpose of this work is to highlight a step-by-step methodology for detecting autoimmune *** use of IIF for detecting autoimmune diseases is widespread in different medical *** 80 different types of autoimmune diseases have existed in various body *** IIF has been used for image classification in both ways,manually and by using the computer-Aided Detection(CAD)*** data scientists conducted various research works using an automatic CAD system with low *** diseases in the human body can be detected with the help of Transfer Learning(TL),an advanced Convolutional Neural Network(CNN)*** baseline paper applied the manual classification to the MIVIA dataset of Human Epithelial cells(HEP)type II cells and the Sub Class Discriminant(SDA)analysis technique used to detect autoimmune *** technique yielded an accuracy of up to 90.03%,which was not reliable for detecting autoimmune disease in the mitotic cells of the *** the current research,the work has been performed on the MIVIA data set of HEP type II cells by using four well-known models of *** augmentation and normalization have been applied to the dataset to overcome the problem of overfitting and are also used to improve the performance of TL *** models are named Inception V3,Dens Net 121,VGG-16,and Mobile Net,and their performance can be calculated through parameters of the confusion matrix(accuracy,precision,recall,and F1 measures).The results show that the accuracy value of VGG-16 is 78.00%,Inception V3 is 92.00%,Dense Net 121 is 95.00%,and Mobile Net shows 88.00%accuracy,***,DenseNet-121 shows the highest performance with suitable analysis of autoimmune *** overall performance highlighted that TL is a suitable and enhanced technique compared to its ***,the proposed technique is used
With the adoption of foundation models(FMs),artificial intelligence(AI) has become increasingly significant in bioinformatics and has successfully addressed many historical challenges,such as pre-training frameworks,m...
详细信息
With the adoption of foundation models(FMs),artificial intelligence(AI) has become increasingly significant in bioinformatics and has successfully addressed many historical challenges,such as pre-training frameworks,model evaluation and *** demonstrate notable proficiency in managing large-scale,unlabeled datasets,because experimental procedures are costly and labor *** various downstream tasks,FMs have consistently achieved noteworthy results,demonstrating high levels of accuracy in representing biological entities.A new era in computational biology has been ushered in by the application of FMs,focusing on both general and specific biological *** this review,we introduce recent advancements in bioinformatics FMs employed in a variety of downstream tasks,including genomics,transcriptomics,proteomics,drug discovery and single-cell *** aim is to assist scientists in selecting appropriate FMs in bioinformatics,according to four model types:language FMs,vision FMs,graph FMs and multimodal *** addition to understanding molecular landscapes,AI technology can establish the theoretical and practical foundation for continued innovation in molecular biology.
Random vectors distributed uniformly in the direction space are widely used, and the computational cost of generating a vector in n dimensions increases only linearly with n. On the other hand, generating uniformly di...
Random vectors distributed uniformly in the direction space are widely used, and the computational cost of generating a vector in n dimensions increases only linearly with n. On the other hand, generating uniformly distributed random vectors in its subspaces typically involves the inefficiency of rejecting vectors falling outside, or re-weighting a non-uniformly distributed set of samples. Both approaches become severely ineffective as n increases. We present an efficient algorithm to generate uniformly distributed random directions in n-dimensional cones, to aid sampling, searching and optimization tasks in high dimensions.
The software development process mostly depends on accurately identifying both essential and optional ***,user needs are typically expressed in free-form language,requiring significant time and human resources to tran...
详细信息
The software development process mostly depends on accurately identifying both essential and optional ***,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional *** address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human ***,existing techniques often struggle with complex instructions and large-scale *** our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer *** results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT *** datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse *** findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes.
This paper presents an approach to joint wireless and computing resource management in slice-enabled metaverse networks, addressing the challenges of inter-slice and intra-slice resource allocation in the presence of ...
详细信息
High-order asynchrony-tolerant (AT) schemes are used to solve the compressible Navier-Stokes equations. The AT schemes are validated for accuracy using canonical flow problems and are found to be in excellent agreemen...
详细信息
暂无评论