Various content-sharing platforms and social media are developed in recent times so that it is highly possible to spread fake news and misinformation. This kind of news may cause chaos and panic among people. The auto...
详细信息
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous vali...
详细信息
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system ***, due to the model's inherent uncertainty, rigorous validation is requisite for its application in real-world tasks. Specific tests may reveal inadequacies in the performance of pre-trained DRL models, while the “black-box” nature of DRL poses a challenge for testing model behavior. We propose a novel performance improvement framework based on probabilistic automata,which aims to proactively identify and correct critical vulnerabilities of DRL systems, so that the performance of DRL models in real tasks can be improved with minimal model ***, a probabilistic automaton is constructed from the historical trajectory of the DRL system by abstracting the state to generate probabilistic decision-making units(PDMUs), and a reverse breadth-first search(BFS) method is used to identify the key PDMU-action pairs that have the greatest impact on adverse outcomes. This process relies only on the state-action sequence and final result of each trajectory. Then, under the key PDMU, we search for the new action that has the greatest impact on favorable results. Finally, the key PDMU, undesirable action and new action are encapsulated as monitors to guide the DRL system to obtain more favorable results through real-time monitoring and correction mechanisms. Evaluations in two standard reinforcement learning environments and three actual job scheduling scenarios confirmed the effectiveness of the method, providing certain guarantees for the deployment of DRL models in real-world applications.
This paper provides a comprehensive survey of various aspects of the systems detecting falls and activities of daily living. Such systems are very useful for elderly people who live alone. The feature values pertainin...
详细信息
The thyroid gland, a pivotal regulator of essential physiological functions, orchestrates the production and release of thyroid hormones, playing a vital role in metabolism, growth, development, and overall bodily fun...
详细信息
Activities and falls monitoring systems using wearable technology have a promising future. The publicly available datasets are based on a few inertial features only acquired with an accelerometer, gyroscope, smartphon...
详细信息
Mobile Ad hoc Network (MANET) is broadly applicable in various sectors within a short amount of time, which is connected to mobile developments. However, the communication in the MANET faces several issues like synchr...
详细信息
There are very few studies to detect different classes of DDoS attacks. Multiclassification helps network administrators to study individual behaviour. In this study, 82 flow-based features are used to detect 13 types...
详细信息
Modern apps require high computing resources for real-time data processing, allowing app users (AUs) to access real-time information. Edge computing (EC) provides dynamic computing resources to AUs for real-time data ...
详细信息
Modern apps require high computing resources for real-time data processing, allowing app users (AUs) to access real-time information. Edge computing (EC) provides dynamic computing resources to AUs for real-time data processing. However, due to resources and coverage constraints, edge servers (ESs) in specific areas can only serve a limited number of AUs. Hence, the app user allocation problem (AUAP) becomes challenging in the EC environment. This paper proposes a quantum-inspired differential evolution algorithm (QDE-UA) for efficient user allocation in the EC environment. The quantum vector is designed to provide a complete solution to the AUAP. The fitness function considers the minimum use of ES, user allocation rate (UAR), energy consumption, and load balance. Extensive simulations and hypotheses-based statistical analyses (ANOVA, Friedman test) are performed to show the significance of the proposed QDE-UA. The results indicate that QDE-UA outperforms the majority of the existing strategies with an average UAR improvement of 112.42%, and 140.62% enhancement in load balance while utilizing 13.98% fewer ESs. Due to the higher UAR, QDE-UA shows 59.28% higher total energy consumption on average. However, the lower energy consumption per AU is evidence of its energy efficiency. IEEE
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the *** that,there are several methods to improve the retrieving process...
详细信息
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the *** that,there are several methods to improve the retrieving process with improved accuracy and to reduce the searching ***,in the data recommendation system,this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation *** improve the performance of data validation,this paper proposed a novel model of data similarity estimation and clustering method to retrieve the relevant data with the best matching in the big data *** this paper advanced model of the Logarithmic Directionality Texture Pattern(LDTP)method with a Metaheuristic Pattern Searching(MPS)system was used to estimate the similarity between the query data in the entire *** overall work was implemented for the application of the data recommendation *** are all indexed and grouped as a cluster to form a paged format of database structure which can reduce the computation time while at the searching ***,with the help of a neural network,the relevancies of feature attributes in the database are predicted,and the matching index was sorted to provide the recommended data for given query *** was achieved by using the Distributional Recurrent Neural Network(DRNN).This is an enhanced model of Neural Network technology to find the relevancy based on the correlation factor of the feature *** training process of the DRNN classifier was carried out by estimating the correlation factor of the attributes of the *** are formed as clusters and paged with proper indexing based on the MPS parameter of similarity *** overall performance of the proposed work can be evaluated by varying the size of the training database by 60%,70%,and 80%.The parameters that are considered for performance analysis are Precision
To improve the effectiveness of online learning, the learning materials recommendation is required to be personalised to the learner material recommendations must be personalized to learners. The existing approaches a...
详细信息
暂无评论