Accidents caused by drivers who exhibit unusual behavior are putting road safety at ever-greater risk. When one or more vehicle nodes behave in this way, it can put other nodes in danger and result in potentially cata...
详细信息
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee *** deadly disease is har...
详细信息
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee *** deadly disease is hard to control because wind,rain,and insects carry *** researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest *** the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate *** overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate *** proposed methodology selects CBD image datasets through four different stages for training and *** to train a model on datasets of coffee berries,with each image labeled as healthy or *** themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed *** of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions *** inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of *** evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is *** involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its *** comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.
Many datasets in real life are complex and dynamic, that is, their key densities are varied over the whole key space and their key distributions change over time. It is challenging for an index structure to efficientl...
详细信息
Identifying influential nodes has attracted the attention of many researchers in recent years. Because of the weak tradeoff between accuracy and running time, and ignoring the community structure by the proposed algor...
详细信息
The transformation of age-old farming practices through the integration of digitization and automation has sparked a revolution in agriculture that is driven by cutting-edge computer vision and artificial intelligence...
详细信息
The transformation of age-old farming practices through the integration of digitization and automation has sparked a revolution in agriculture that is driven by cutting-edge computer vision and artificial intelligence(AI)*** transformation not only promises increased productivity and economic growth,but also has the potential to address important global issues such as food security and *** survey paper aims to provide a holistic understanding of the integration of vision-based intelligent systems in various aspects of precision *** providing a detailed discussion on key areas of digital life cycle of crops,this survey contributes to a deeper understanding of the complexities associated with the implementation of vision-guided intelligent systems in challenging agricultural *** focus of this survey is to explore widely used imaging and image analysis techniques being utilized for precision farming *** paper first discusses various salient crop metrics used in digital *** this paper illustrates the usage of imaging and computer vision techniques in various phases of digital life cycle of crops in precision agriculture,such as image acquisition,image stitching and photogrammetry,image analysis,decision making,treatment,and *** establishing a thorough understanding of related terms and techniques involved in the implementation of vision-based intelligent systems for precision agriculture,the survey concludes by outlining the challenges associated with implementing generalized computer vision models for real-time deployment of fully autonomous farms.
In this article, we present the first rigorous theoretical analysis of the generalisation performance of a Geometric Semantic Genetic Programming (GSGP) system. More specifically, we consider a hill-climber using the ...
详细信息
Techniques that exploit spectral-spatial information have proven to be very effective in hyperspectral image classification. Joint sparse representation classification (JSRC) is one such technique which has been exten...
详细信息
A new, to our knowledge, doped combination of Nd3+, Tm3+, and Ce3+ ions was developed in tellurite glass with a fundamental composition of TeO2-ZnO-WO3-Bi2O3, and the structural, thermal, and especially near-infrared ...
详细信息
In this paper,an induced current learning method(ICLM)for microwave through wall imaging(TWI),named as TWI-ICLM,is *** the inversion of induced current,the unknown object along with the enclosed walls are treated as a...
详细信息
In this paper,an induced current learning method(ICLM)for microwave through wall imaging(TWI),named as TWI-ICLM,is *** the inversion of induced current,the unknown object along with the enclosed walls are treated as a combination of ***,a non-iterative method called distorted-Born backpropagation(DB-BP)is utilized to generate the initial *** the training stage,several convolutional neural networks(CNNs)are cascaded to improve the estimated induced *** addition,a hybrid loss function consisting of the induced current error and the permittivity error is used to optimize the network ***,the relative permittivity images are conducted analytically using the predicted current based on *** the numerical and experimental TWI tests prove that,the proposed method can achieve better imaging accuracy compared to traditional distorted-Born iterative method(DBIM).
作者:
A.E.M.EljialyMohammed Yousuf UddinSultan AhmadDepartment of Information Systems
College of Computer Engineering and SciencesPrince Sattam Bin Abdulaziz UniversityAlkharjSaudi Arabia Department of Computer Science
College of Computer Engineering and SciencesPrince Sattam Bin Abdulaziz UniversityAlkharjSaudi Arabiaand also with University Center for Research and Development(UCRD)Department of Computer Science and EngineeringChandigarh UniversityPunjabIndia
Intrusion detection systems (IDSs) are deployed to detect anomalies in real time. They classify a network’s incoming traffic as benign or anomalous (attack). An efficient and robust IDS in software-defined networks i...
详细信息
Intrusion detection systems (IDSs) are deployed to detect anomalies in real time. They classify a network’s incoming traffic as benign or anomalous (attack). An efficient and robust IDS in software-defined networks is an inevitable component of network security. The main challenges of such an IDS are achieving zero or extremely low false positive rates and high detection rates. Internet of Things (IoT) networks run by using devices with minimal resources. This situation makes deploying traditional IDSs in IoT networks unfeasible. Machine learning (ML) techniques are extensively applied to build robust IDSs. Many researchers have utilized different ML methods and techniques to address the above challenges. The development of an efficient IDS starts with a good feature selection process to avoid overfitting the ML model. This work proposes a multiple feature selection process followed by classification. In this study, the Software-defined networking (SDN) dataset is used to train and test the proposed model. This model applies multiple feature selection techniques to select high-scoring features from a set of features. Highly relevant features for anomaly detection are selected on the basis of their scores to generate the candidate dataset. Multiple classification algorithms are applied to the candidate dataset to build models. The proposed model exhibits considerable improvement in the detection of attacks with high accuracy and low false positive rates, even with a few features selected.
暂无评论