This paper provides a finite-sample analysis of a passive stochastic gradient Langevin dynamics (PSGLD) algorithm. This algorithm is designed to achieve adaptive inverse reinforcement learning (IRL). Adaptive IRL aims...
详细信息
In this paper,we propose an observer-based algorithm for balancing the state-of-charge(SoC)among battery units in a battery energy storage system(BESS).The dynamical behaviour of a battery unit is approximated by an e...
详细信息
In this paper,we propose an observer-based algorithm for balancing the state-of-charge(SoC)among battery units in a battery energy storage system(BESS).The dynamical behaviour of a battery unit is approximated by an equivalent circuit model,based on which a nonlinear SoC observer can be *** distribution laws are designed for the battery units according to the states of the battery units,the average battery state,and the average power *** estimation algorithms for the average battery state and the average power demand,as well as SoC observers,are constructed to implement *** BESS is shown to achieve SoC balancing among all its battery units while satisfying the power demand,as long as mild conditions on the underlying communication network and on the power demand are *** results are presented to demonstrate the effectiveness of the proposed algorithm.
In thicker polymer active layers charge collection efficiency suffers due to low carrier mobility and increased recombination losses. In thin absorber polymer solar cell to increase absorption, light-trapping techniqu...
详细信息
In thicker polymer active layers charge collection efficiency suffers due to low carrier mobility and increased recombination losses. In thin absorber polymer solar cell to increase absorption, light-trapping techniques and plasmonic structures are essential. This study investigates the effect of shell thickness on the photocurrent density of a poly(3-hexylthiophene): phenyl-C61- butyric acid methyl ester (P3HT:PCBM) polymer based solar cell incorporating core–shell nanoparticles with configurations of Au–Ag and Ag-Au core–shell nanoparticles. Through a series of simulation, the photocurrent density was calculated as a function of shell thickness. The results demonstrate that, for both nanoparticle configurations, the photocurrent density generally increases with shell thickness, reaching an optimal point before stabilizing or slightly decreasing. Additionally, the effects of dielectric shells made of SiO₂ and Al₂O₃ on its performance parameters were analyzed. The study also found that the photocurrent decreases with increasing shell thickness for both SiO₂ and Al₂O₃ shells, with a more pronounced decrease for SiO₂ due to its smaller refractive index and greater change in shorter wavelengths. The photocurrent density of 13.74 mA/cm2 is achieved for a cell with a thickness of 80 nm without nanoparticles. This value increases to 16.62 mA/cm2 for a cell incorporating Ag nanoparticles and reaches 19.3 mA/cm2 for a cell with Au–Ag core–shell nanoparticles at the optimal shell thickness. The power conversion efficiency of the polymer solar cell increases from 7.02% without nanoparticles to 8.67% with Ag, 8.45% with Au, and reaches the highest value of 10.26% with Au–Ag core–shell nanoparticles, highlighting the superior performance of the core–shell configuration. This superior performance is attributed to the enhanced plasmonic effects of the Au–Ag combination, which facilitates better light trapping and absorption. These findings underscore the importance of optimizing
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution *** prevent voltage violations,multi-terminal soft open points(M-sOPs)hav...
详细信息
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution *** prevent voltage violations,multi-terminal soft open points(M-sOPs)have been integrated into the distribution systems to enhance voltage con-trol ***,the M-SOP voltage control recalculated in real time cannot adapt to the rapid fluctuations of photovol-taic(PV)power,fundamentally limiting the voltage controllabili-ty of *** address this issue,a full-model-free adaptive graph deep deterministic policy gradient(FAG-DDPG)model is proposed for M-SOP voltage ***,the attention-based adaptive graph convolutional network(AGCN)is lever-aged to extract the complex correlation features of nodal infor-mation to improve the policy learning ***,the AGCN-based surrogate model is trained to replace the power flow cal-culation to achieve model-free ***,the deep deterministic policy gradient(DDPG)algorithm allows FAG-DDPG model to learn an optimal control strategy of M-SOP by continuous interactions with the AGCN-based surrogate *** tests have been performed on modified IEEE 33-node,123-node,and a real 76-node distribution systems,which demonstrate the effectiveness and generalization ability of the proposed FAG-DDPGmodel.
Uncertainty quantification approaches have been more critical in large language models (LLMs), particularly high-risk applications requiring reliable outputs. However, traditional methods for uncertainty quantificatio...
详细信息
Visual Feature Learning (VFL) is a critical area of research in computer vision that involves the automatic extraction of features and patterns from images and videos. The applications of VFL are vast, including objec...
详细信息
作者:
Byun, HyungjoASRI
Department of Electrical and Computer Engineering Seoul National University Korea Republic of
Controlling nonlinear systems with linear feedback controller after linearization is a widely used method. This paper proposes a new method to efficiently train a reinforcement learning agent to select the control gai...
详细信息
Since gastric cancer is growing fast, accurate and prompt diagnosis is essential, utilizing computer-aided diagnosis (CAD) systems is an efficient way to achieve this goal. Using methods related to computer vision ena...
详细信息
Since gastric cancer is growing fast, accurate and prompt diagnosis is essential, utilizing computer-aided diagnosis (CAD) systems is an efficient way to achieve this goal. Using methods related to computer vision enables more accurate predictions and faster diagnosis, leading to timely treatment. CAD systems can categorize photos effectively using deep learning techniques based on image analysis and classification. Accurate and timely classification of histopathology images is critical for enabling immediate treatment strategies, but remains challenging. We propose a hybrid deep learning and gradient-boosting approach that achieves high accuracy in classifying gastric histopathology images. This approach examines two classifiers for six networks known as pre-trained models to extract features. Extracted features will be fed to the classifiers separately. The inputs are gastric histopathological images. The GasHisSDB dataset provides these inputs containing histopathology gastric images in three 80px, 120px, and 160px cropping sizes. According to these achievements and experiments, we proposed the final method, which combines the EfficientNetV2B0 model to extract features from the images and then classify them using the CatBoost classifier. The results based on the accuracy score are 89.7%, 93.1%, and 93.9% in 80px, 120px, and 160px cropping sizes, respectively. Additional metrics including precision, recall, and F1-scores were above 0.9, demonstrating strong performance across various evaluation criteria. In another way, to approve and see the model efficiency, the GradCAM algorithm was implemented. Visualization via Grad-CAM illustrated discriminative regions identified by the model, confirming focused learning on histologically relevant features. The consistent accuracy and reliable detections across diverse evaluation metrics substantiate the robustness of the proposed deep learning and gradient-boosting approach for gastric cancer screening from histopathology
作者:
Sim, SeungminKim, JinwoongLee, Jemin
Department of Electrical and Computer Engineering Korea Republic of
Department of Electrical Engineering and Computer Science Korea Republic of
In this paper, we analyze covert amplify-and-forward (AF) relay networks with a metric for measuring the data freshness, i.e, age of information (AoI), with aid of the cooperative jammer that generates artificial nois...
详细信息
Phishing is one of the most important security threats in modern information systems causing different levels of damages to end-users and service providers such as financial and reputational losses. State-of-the-art a...
详细信息
暂无评论