Federated learning (FL) has increasingly been deployed, in its vertical form, among organizations to facilitate secure collaborative training. In vertical FL (VFL), participants hold disjoint features of the same set ...
详细信息
作者:
Zjavka, LadislavDepartment of Computer Science
Faculty of Electrical Engineering and Computer Science VŠB-Technical University of Ostrava 17. Listopadu 15/2172 Ostrava Czech Republic
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV for...
详细信息
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV forecasting is unavoidable in supply and load planning necessary in integration of smart systems into electrical grids. Intra- or day-ahead modelling of weather patterns based on Artificial Intelligence (AI) allows one to refine available 24 h. cloudiness forecast or predict PV production at a particular plant location during the day. AI usually gets an adequate prediction quality in shorter-level horizons, using the historical meteo- and PV record series as compared to Numerical Weather Prediction (NWP) systems. NWP models are produced every 6 h to simulate grid motion of local cloudiness, which is additionally delayed and usually scaled in a rough less operational applicability. Differential Neural Network (DNN) is based on a newly developed neurocomputing strategy that allows the representation of complex weather patterns analogous to NWP. DNN parses the n-variable linear Partial Differential Equation (PDE), which describes the ground-level patterns, into sub-PDE modules of a determined order at each node. Their derivatives are substituted by the Laplace transforms and solved using adapted inverse operations of Operation Calculus (OC). DNN fuses OC mathematics with neural computing in evolution 2-input node structures to form sum modules of selected PDEs added step-by-step to the expanded composite model. The AI multi- 1…9-h and one-stage 24-h models were evolved using spatio-temporal data in the preidentified daily learning sequences according to the applied input–output data delay to predict the Clear Sky Index (CSI). The prediction results of both statistical schemes were evaluated to assess the performance of the AI models. Intraday models obtain slightly better prediction accuracy in average errors compared to those applied in the second-day-ahead
The disappearance of Indigenous languages results in a decrease in cultural diversity, hence making the preservation of these languages extremely important. Conventional methods of documentation are lengthy, and the p...
详细信息
Wireless charging is widely used to charge smart devices with limited battery capacity. However, it is susceptible to the identity spoofing attack, where adversaries can impersonate malicious devices as legitimate one...
详细信息
Identifying drug–target interactions (DTIs) is a critical step in both drug repositioning. The labor-intensive, time-consuming, and costly nature of classic DTI laboratory studies makes it imperative to create effici...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
This paper investigates the capacity of finite-state channels (FSCs) with feedback. We derive an upper bound on the feedback capacity of FSCs by extending the duality upper bound method from mutual information to the ...
详细信息
Predictability is an essential challenge for autonomous vehicles(AVs)’*** neural networks have been widely deployed in the AV’s perception ***,it is still an open question on how to guarantee the perception predicta...
详细信息
Predictability is an essential challenge for autonomous vehicles(AVs)’*** neural networks have been widely deployed in the AV’s perception ***,it is still an open question on how to guarantee the perception predictability for AV because there are millions of deep neural networks(DNNs)model combinations and system configurations when deploying DNNs in *** paper proposes configurable predictability testbed(CPT),a configurable testbed for quantifying the predictability in AV’s perception *** provides flexible configurations of the perception pipeline on data,DNN models,fusion policy,scheduling policies,and predictability *** top of CPT,the researchers can profile and optimize the predictability issue caused by different application and system *** has been open-sourced at:https://***/Torreskai0722/CPT.
Traditional multi-secret sharing (MSS) schemes generate random shares to secure secrets, but their noisy appearance can raise suspicion. To address this, we present an advanced (n+1,n+1) MSS scheme that generates mean...
详细信息
暂无评论