Modern technological advancements have made social media an essential component of daily *** media allow individuals to share thoughts,emotions,and *** analysis plays the function of evaluating whether the sentiment o...
详细信息
Modern technological advancements have made social media an essential component of daily *** media allow individuals to share thoughts,emotions,and *** analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the *** analysis is essential in business and society because it impacts strategic *** analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance *** execution time increases due to the sequential processing of the sequence ***,the calculation times for the Transformer models are reduced because of the parallel *** study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their *** particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment *** the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics *** proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.
Web-services have become most common IT enablers today. Cyber attacks such as the distributed denial of service (DDoS) attacks pose availability concerns which may result into service outages and consequently financia...
详细信息
As a frontier technology,holography has important research values in fields such as bio-micrographic imaging,light feld modulation and data ***,the real-time acquisition of 3D scenes and high-fidelity reconstruction t...
详细信息
As a frontier technology,holography has important research values in fields such as bio-micrographic imaging,light feld modulation and data ***,the real-time acquisition of 3D scenes and high-fidelity reconstruction technology has not yet made a breakthrough,which has seriously hindered the development of ***,a novel holographic camera is proposed to solve the above inherent problems *** proposed holographic camera consists of the acquisition end and the calculation *** the acquisition end of the holographic camera,specially configured liquid materials and liquid lens structure based on voice-coil motor-driving are used to produce the liquid camera,so that the liquid camera can quickly capture the focus stack of the real 3D scene within 15 *** the calculation end,a new structured focus stack network(FS-Net)is designed for hologram *** training the FS-Net with the focus stack renderer and learnable Zernike phase,it enables hologram calculation within 13 *** the first device to achieve real-time incoherent acquisition and high-fidelity holographic reconstruction of a real 3D scene,our proposed holographic camera breaks technical bottlenecks of difficulty in acquiring the real 3D scene,low quality of the holographic reconstructed image,and incorrect defocus *** experimental results demonstrate the effectiveness of our holographic camera in the acquisition of focal plane information and hologram calculation of the real 3D *** proposed holographic camera opens up a new way for the application of holography in fields such as 3D display,light field modulation,and 3D measurement.
The accurate, extended period prediction of individual customer energy consumption is critical for utility providers. Machine learning techniques, particularly neural networks, have proven effective in predicting hous...
详细信息
Underwater image enhancement and object detection has great potential for studying underwater environments. It has been utilized in various domains, including image-based underwater monitoring and Autonomous Underwate...
详细信息
Underwater image enhancement and object detection has great potential for studying underwater environments. It has been utilized in various domains, including image-based underwater monitoring and Autonomous Underwater Vehicle (AUV)-driven applications such as underwater terrain surveying. It has been observed that underwater images are not clear due to several factors such as low light, the presence of small particles, different levels of refraction of light, etc. Extracting high-quality features from these images to detect objects is a significant challenging task. To mitigate this challenge, MIRNet and the modified version of YOLOv3 namely Underwater-YOLOv3 (U-YOLOv3) is proposed. The MIRNet is a deep learning-based technology for enhancing underwater images. while using YOLOv3 for underwater object detection it lacks in detection of very small objects and huge-size objects. To address this problem proper anchor box size, quality feature aggregation technique, and during object classification image resizing is required. The proposed U-YOLOv3 has three unique features that help to work with the above specified issue like accurate anchor box determination using the K-means++ clustering algorithm, introduced Spatial Pyramid Pooling (SPP) layer during feature extraction which helps in feature aggregation, and added downsampling and upsampling to improve the detection rate of very large and very small size objects. The size of the anchor box is crucial in detecting objects of different sizes, SPP helps in aggregation of features, while down and upsampling changes sizes of objects during object detection. Precision, recall, F1-score and mAP are used as assessment metrics to assess proposed work. The proposed work compared with SSD, Tiny-YOLO, YOLOv2, YOLOv3, YOLOv4, YOLOv5, KPE-YOLOv5, YOLOv7, YOLOv8 and YOLOv9 single stage object detectors. The experiment on the Brackish and Trash ICRA19 datasets shows that our proposed method enhances the mean average precision for b
This article focuses on enhancing the cybersecurity of cyber-physical systems, with a particular emphasis on the False Data Injection (FDI) attack within the Demand Response (DR) mechanism in smart grids. DR seeks to ...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have be...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have been developed to tackle these ***,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional *** fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within *** traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of *** selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)*** this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious *** classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable *** the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive *** experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different *** outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%*** results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
With the explosive growth of mobile data traffic, roadside-unit (RSU) caching is considered an effective way to offload download traffic in vehicular ad hoc networks (VANETs). Many existing works investigate the conte...
详细信息
The world of digitization is growing exponentially;data optimization, security of a network, and energy efficiency are becoming more prominent. The Internet of Things (IoT) is the core technology of modern society. Th...
详细信息
Lung cancer is the most lethal form of cancer. This paper introduces a novel framework to discern and classify pulmonary disorders such as pneumonia, tuberculosis, and lung cancer by analyzing conventional X-ray and C...
详细信息
暂无评论