Reinforcement learning(RL)has shown significant potential for dealing with complex decision-making ***,its performance relies heavily on the availability of a large amount of high-quality *** many real-world situation...
详细信息
Reinforcement learning(RL)has shown significant potential for dealing with complex decision-making ***,its performance relies heavily on the availability of a large amount of high-quality *** many real-world situations,data distribution in the target domain may differ significantly from that in the source domain,leading to a significant drop in the performance of RL *** adaptation(DA)strategies have been proposed to address this issue by transferring knowledge from a source domain to a target ***,there have been no comprehensive and in-depth studies to evaluate these *** this paper we present a comprehensive and systematic study of DA in *** first introduce the basic concepts and formulations of DA in RL and then review the existing DA methods used in *** main objective is to fill the existing literature gap regarding DA in *** achieve this,we conduct a rigorous evaluation of state-of-the-art DA *** aim to provide comprehensive insights into DA in RL and contribute to advancing knowledge in this *** existing DA approaches are divided into seven categories based on application *** approaches in each category are discussed based on the important data adaptation metrics,and then their key characteristics are ***,challenging issues and future research trends are highlighted to assist researchers in developing innovative improvements.
Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine *** feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of featu...
详细信息
Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine *** feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of features using typical *** a result,a new metaheuristicsbased feature selection method based on the dipper-throated and grey-wolf optimization(DTO-GW)algorithms has been developed in this *** can result when the selection of features is subject to metaheuristics,which can lead to a wide range of ***,we adopted hybrid optimization in our method of optimizing,which allowed us to better balance exploration and harvesting chores more *** propose utilizing the binary DTO-GW search approach we previously devised for selecting the optimal subset of *** the proposed method,the number of features selected is minimized,while classification accuracy is *** test the proposed method’s performance against eleven other state-of-theart approaches,eight datasets from the UCI repository were used,such as binary grey wolf search(bGWO),binary hybrid grey wolf,and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hysteresis optimization(bHy),and binary hysteresis optimization(bHWO).The suggested method is superior 4532 CMC,2023,vol.74,no.2 and successful in handling the problem of feature selection,according to the results of the experiments.
We consider the problem of control allocation for weakly redundant systems subject to actuator faults. In particular, the design of a suitable allocator will be devised with the aim of compensating for the fault effec...
Wind power is one of the sustainable ways to generate renewable *** recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainable gro...
详细信息
Wind power is one of the sustainable ways to generate renewable *** recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainable growth,primarily the use of wind and solar *** achieve the prediction of wind power generation,several deep and machine learning models are constructed in this article as base *** regression models are Deep neural network(DNN),k-nearest neighbor(KNN)regressor,long short-term memory(LSTM),averaging model,random forest(RF)regressor,bagging regressor,and gradient boosting(GB)*** addition,data cleaning and data preprocessing were performed to the *** dataset used in this study includes 4 features and 50530 *** accurately predict the wind power values,we propose in this paper a new optimization technique based on stochastic fractal search and particle swarm optimization(SFSPSO)to optimize the parameters of LSTM *** evaluation criteria were utilized to estimate the efficiency of the regression models,namely,mean absolute error(MAE),Nash Sutcliffe Efficiency(NSE),mean square error(MSE),coefficient of determination(R2),root mean squared error(RMSE).The experimental results illustrated that the proposed optimization of LSTM using SFS-PSO model achieved the best results with R2 equals 99.99%in predicting the wind power values.
In addition to increasing the output current, an interleaved buck converter can significantly reduce the current ripple at the output. However, the bottleneck of the interleaved buck converter application is the unbal...
详细信息
The sample’s hemoglobin and glucose levels can be determined by obtaining a blood sample from the human body using a needle and analyzing ***(HGB)is a critical component of the human body because it transports oxygen...
详细信息
The sample’s hemoglobin and glucose levels can be determined by obtaining a blood sample from the human body using a needle and analyzing ***(HGB)is a critical component of the human body because it transports oxygen from the lungs to the body’s tissues and returns carbon dioxide from the tissues to the *** the HGB level is a critical step in any blood analysis *** often indicate whether a person is anemic or polycythemia *** ensemble models by combining two or more base machine learning(ML)models can help create a more improved *** purpose of this work is to present a weighted average ensemble model for predicting hemoglobin *** optimization method is utilized to get the ensemble’s optimum *** optimum weight for this work is determined using a sine cosine algorithm based on stochastic fractal search(SCSFS).The proposed SCSFS ensemble is compared toDecision Tree,Multilayer perceptron(MLP),Support Vector Regression(SVR)and Random Forest Regressors as model-based approaches and the average ensemble *** SCSFS results indicate that the proposed model outperforms existing models and provides an almost accurate hemoglobin estimate.
We propose Hamiltonian quantum generative adversarial networks (HQuGANs) to learn to generate unknown input quantum states using two competing quantum optimal controls. The game-theoretic framework of the algorithm is...
详细信息
We propose Hamiltonian quantum generative adversarial networks (HQuGANs) to learn to generate unknown input quantum states using two competing quantum optimal controls. The game-theoretic framework of the algorithm is inspired by the success of classical generative adversarial networks in learning high-dimensional distributions. The quantum optimal control approach not only makes the algorithm naturally adaptable to the experimental constraints of near-term hardware, but also offers a more natural characterization of overparameterization compared to the circuit model. We numerically demonstrate the capabilities of the proposed framework to learn various highly entangled many-body quantum states, using simple two-body Hamiltonians and under experimentally relevant constraints such as low-bandwidth controls. We analyze the computational cost of implementing HQuGANs on quantum computers and show how the framework can be extended to learn quantum dynamics. Furthermore, we introduce a cost function that circumvents the problem of mode collapse that prevents convergence of HQuGANs and demonstrate how to accelerate the convergence of them when generating a pure state.
Critical Raw Materials attract increasing attention due to their depleting reserves and low recyclability. Niobium, one of the most rare and vital elements, is primarily found in Brazil. This research explores the pot...
详细信息
Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart ***,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),which may ...
详细信息
Phasor measurement units(PMUs)provide useful data for real-time monitoring of the smart ***,there may be time-varying deviation in phase angle differences(PADs)between both ends of the transmission line(TL),which may deteriorate application performance based on *** address that,this paper proposes two robust methods of correcting time-varying PAD deviation with unknown parameters of TL(ParTL).First,the phenomena of time-varying PAD deviation observed from field PMU data are *** general formulations for PAD estimation are then *** simplify the formulations,estimation of PADs is converted into the optimal problem with a single ParTL as the variable,yielding a linear estimation of *** latter is used by second-order Taylor series expansion to estimate PADs *** reduce the impact of possible abnormal amplitude data in field data,the IGG(Institute of Geodesy&Geophysics,Chinese Academy of Sciences)weighting function is *** using both simulated and field data verify the effectiveness and robustness of the proposed methods.
This paper presents a control structure featuring an operator Q driven by the residual signal, which indicates the difference between the measurement output and the estimated output from an observer. The form of this ...
详细信息
暂无评论